Variation and infectivity neutralization in influenza

Worldwide epidemics of influenza are caused by viruses that normally infect other species, particularly waterfowl, and that contain haemagglutinin membrane glycoproteins (HAs) to which the human population has no immunity. Anti‐HA immunoglobulins neutralize influenza virus infectivity. In this review we outline structural differences that distinguish the HAs of the 16 antigenic subtypes (H1–16) found in viruses from avian species. We also describe structural changes in HA required for the effective transfer to humans of viruses containing three of them, H1, H2 and H3, in the 1918 (Spanish), the 1957 (Asian) and the 1968 (Hong Kong) pandemics, respectively. In addition, we consider changes that may be required before the current avian H5 viruses could pass from human to human.

[1]  J. Yewdell,et al.  The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype) , 1982, Cell.

[2]  G M Whitesides,et al.  Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. , 1989, Biochemistry.

[3]  J. Skehel,et al.  An antibody that prevents the hemagglutinin low pH fusogenic transition. , 2002, Virology.

[4]  D. J. Stevens,et al.  Avian and human receptor binding by hemagglutinins of influenza A viruses , 2006, Glycoconjugate Journal.

[5]  R. Poljak,et al.  Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution , 1986, Science.

[6]  Damien Fleury,et al.  Antigen distortion allows influenza virus to escape neutralization , 1998, Nature Structural Biology.

[7]  I. Wilson,et al.  Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity , 1983, Nature.

[8]  W G Laver,et al.  Molecular mechanisms of variation in influenza viruses , 1982, Nature.

[9]  N. Cox,et al.  Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites , 1983, Journal of virology.

[10]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[11]  R. Rueckert,et al.  Neutralization of poliovirus by a monoclonal antibody: kinetics and stoichiometry. , 1983, Virology.

[12]  Yoshihiro Kawaoka,et al.  Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals , 2000, Journal of Virology.

[13]  N. Dimmock,et al.  Update on the neutralisation of animal viruses , 1995 .

[14]  J. Skehel,et al.  X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  I. Wilson,et al.  Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[17]  M. Knossow,et al.  Three-dimensional structure of an antigenic mutant of the influenza virus haemagglutinin , 1984, Nature.

[18]  G. Both,et al.  Antigenic drift in the hemagglutinin of the Hong Kong influenza subtype: correlation of amino acid changes with alterations in viral antigenicity , 1981, Journal of virology.

[19]  J. Paulson,et al.  Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. , 1983, Virology.

[20]  Albert D. M. E. Osterhaus,et al.  Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls , 2005, Journal of Virology.

[21]  J. Skehel,et al.  Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. , 1983, The Journal of general virology.

[22]  R. Webster,et al.  The Surface Glycoproteins of H5 Influenza Viruses Isolated from Humans, Chickens, and Wild Aquatic Birds Have Distinguishable Properties , 1999, Journal of Virology.

[23]  R. Webster,et al.  Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies , 1981, Nature.

[24]  Pascal Rigolet,et al.  Structure of influenza virus haemagglutinin complexed with a neutralizing antibody , 1995, Nature.

[25]  K. Mozdzanowska,et al.  Role of the B‐cell response in recovery of mice from primary influenza virus infection , 1997, Immunological reviews.

[26]  Y. Muraki,et al.  Effect of the Addition of Oligosaccharides on the Biological Activities and Antigenicity of Influenza A/H3N2 Virus Hemagglutinin , 2004, Journal of Virology.

[27]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[28]  I. Wilson,et al.  A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Hay,et al.  Recent changes among human influenza viruses. , 2004, Virus research.

[30]  Y Tateno,et al.  Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. , 1991, Virology.

[31]  R. Webster,et al.  Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics , 1989, Journal of virology.

[32]  I. Wilson,et al.  Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation , 1981, Nature.

[33]  Y. Guan,et al.  H5N1 Outbreaks and Enzootic Influenza , 2006, Emerging infectious diseases.

[34]  G. Air,et al.  Antigenic drift in type A influenza virus: sequence differences in the hemagglutinin of Hong Kong (H3N2) variants selected with monoclonal hybridoma antibodies. , 1979, Virology.

[35]  K. Mozdzanowska,et al.  Virus-neutralizing antibodies of immunoglobulin G (IgG) but not of IgM or IgA isotypes can cure influenza virus pneumonia in SCID mice , 1995, Journal of virology.

[36]  Ya Ha,et al.  H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes , 2002, The EMBO journal.

[37]  G. Air,et al.  The molecular basis of antigenic variation in influenza virus. , 1986, Advances in virus research.

[38]  J. Skehel,et al.  H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. , 2004, Virology.

[39]  Ian A. Wilson,et al.  Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus , 2004, Science.

[40]  J. Skehel,et al.  N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. N. Varghese,et al.  Structure of the catalytic and antigenic sites in influenza virus neuraminidase , 1983, Nature.

[42]  J. Skehel,et al.  Electron microscopy of influenza haemagglutinin-monoclonal antibody complexes. , 1983, Virology.

[43]  S. Watowich,et al.  Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. , 1994, Structure.

[44]  G. Air,et al.  Sequence relationships among the hemagglutinin genes of 12 subtypes of influenza A virus. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. J. Stevens,et al.  The Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin , 2004, Science.

[46]  M B Eisen,et al.  Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography. , 1997, Virology.

[47]  Angus Nicoll,et al.  Avian influenza A (H5N1) infection in humans. , 2005, The New England journal of medicine.

[48]  N. Cox,et al.  The antigenicity and evolution of influenza H1 haemagglutinin, from 1950-1957 and 1977-1983: two pathways from one gene. , 1986, Virology.

[49]  J. Skehel,et al.  Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. , 1994, Biochemistry.

[50]  J. Skehel,et al.  The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. , 1987, Annual review of biochemistry.

[51]  R. Webster,et al.  Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. , 1996, Virology.

[52]  G. Air,et al.  Mechanism of antigenic drift in influenza virus. Amino acid sequence changes in an antigenically active region of Hong Kong (H3N2) influenza virus hemagglutinin. , 1981, Journal of molecular biology.

[53]  J. Stephenson,et al.  High and low efficiency neutralization epitopes on the haemagglutinin of type A influenza virus. , 1997, The Journal of general virology.

[54]  J. Skehel,et al.  Mechanism of neutralization of influenza virus infectivity by antibodies. , 2002, Virology.

[55]  Damien Fleury,et al.  A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site , 1999, Nature Structural Biology.

[56]  S. Cusack,et al.  Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid , 1988, Nature.

[57]  I. Wilson,et al.  Structural basis of immune recognition of influenza virus hemagglutinin. , 1990, Annual review of immunology.