Sojourn time in an M/M/1 processor sharing queue with permanent customers
暂无分享,去创建一个
[1] S. Wittevrongel,et al. Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.
[2] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[3] B. Sengupta,et al. A conditional response time of the M/M/1 processor-sharing queue , 1985, AT&T Technical Journal.
[4] R. Schassberger,et al. A new approach to the M/G/1 processor-sharing queue , 1984, Advances in Applied Probability.
[5] Edward G. Coffman,et al. Waiting Time Distributions for Processor-Sharing Systems , 1970, JACM.
[6] T. Ott. THE SOJOURN-TIME DISTRIBUTION IN THE M/G/1 QUEUE , 1984 .
[7] Félix Pollaczek. Sur une généralisation des polynomes de Jacobi , 1956 .
[8] Leonard Kleinrock,et al. Time-shared Systems: a theoretical treatment , 1967, JACM.
[9] L. Flatto. The waiting time distribution for the random order service $M/M/1$ queue , 1997 .
[10] J. Morrison. Response-Time Distribution for a Processor-Sharing System , 1985 .
[11] O. J. Boxma,et al. The M/G/1 Queue with Permanent Customers , 1991, IEEE J. Sel. Areas Commun..
[12] Richard Askey,et al. Recurrence relations, continued fractions, and orthogonal polynomials , 1984 .
[13] FABRICE GUILLEMIN,et al. Analysis of the M/M/1 Queue with Processor Sharing via Spectral Theory , 2001, Queueing Syst. Theory Appl..
[14] M. Ismail,et al. On sieved orthogonal polynomials. V: Sieved Pollaczek polynomials , 1987 .
[15] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[16] Sem C. Borst,et al. The equivalence between processor sharing and service in random order , 2003, Oper. Res. Lett..