Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry

Abstract For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous and trench advance quite rare, largely due to rheological and ridge-push effects. Recently updated analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Marianas–Izu–Bonin arc. Thus, we explore conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry of the Philippine Sea region. In this subduction system, a slab-pull force from distal subduction is transmitted to the overriding plate at the Pacific trench. Our 2D modeling demonstrates that trench advance can occur for terrestrial rheologies in such special geometries. We observe persistent trench advance punctuated by two episodes of back-arc extension. Characteristic features of the model, such as time interval between extensional episodes, high back-arc heat flow, and stress state of Philippine plate correspond to processes recorded in the region.

[1]  S. Kramer,et al.  Interaction of subducted slabs with the mantle transition‐zone: A regime diagram from 2‐D thermo‐mechanical models with a mobile trench and an overriding plate , 2014 .

[2]  R. Arculus,et al.  40Ar/ 39Ar and K–Ar geochronological age constraints for the inception and early evolution of the Izu–Bonin – Mariana arc system , 1998 .

[3]  N. Ribe Bending mechanics and mode selection in free subduction: a thin-sheet analysis , 2010 .

[4]  A. Beck Heat Flow , 2015 .

[5]  Shin-Chan Han,et al.  Source parameter inversion for recent great earthquakes from a decade‐long observation of global gravity fields , 2013 .

[6]  C. Kreemer,et al.  Absolute plate velocities from seismic anisotropy: Importance of correlated errors , 2014 .

[7]  E. Okal,et al.  A global survey of stress orientations in subducting slabs as revealed by intermediate‐depth earthquakes , 2004 .

[8]  T. Gerya,et al.  Geodynamic regimes of intra-oceanic subduction: Implications for arc extension vs. shortening processes , 2014 .

[9]  H. Čížková,et al.  The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere , 2012 .

[10]  R. Carlson,et al.  Characteristics of back-arc regions , 1984 .

[11]  Richard G. Gordon,et al.  Geologically current plate motions , 2010 .

[12]  H. Čížková,et al.  Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback , 2013 .

[13]  H. Čížková,et al.  Long-wavelength character of subducted slabs in the lower mantle , 2008 .

[14]  D. Stegman,et al.  A regime diagram for subduction styles from 3-D numerical models of free subduction , 2010 .

[15]  R. Boehler,et al.  Thermal expansivity in the lower mantle , 1992 .

[16]  B. Taylor,et al.  Rifting and the Volcanic-Tectonic Evolution of the Izu-Bonin-Mariana Arc , 1992 .

[17]  L. Handayani Seismic tomography constraints on reconstructing the Philippine Sea Plate and its margin , 2005 .

[18]  Y. Fukao,et al.  Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity , 2012 .

[19]  G. Hirth,et al.  Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists , 2013 .

[20]  George Helffrich,et al.  Phase transition Clapeyron slopes and transition zone seismic discontinuity topography , 1994 .

[21]  R. Carlson,et al.  Subduction hinge migration , 1984 .

[22]  Walter R. Roest,et al.  Age, spreading rates, and spreading asymmetry of the world's ocean crust , 2008 .

[23]  G. Morra,et al.  The role of elasticity in slab bending , 2014 .

[24]  S. Uyeda,et al.  Heat flow in the Philippine Sea , 1970 .

[25]  Simon L. Klemperer,et al.  An Overview of the Izu‐Bonin‐Mariana Subduction Factory , 2013 .

[26]  C. Thieulot,et al.  Influence of surrounding plates on 3D subduction dynamics , 2009 .

[27]  R. Larter,et al.  Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes , 2003 .

[28]  E. Bataillon Geodynamic setting of Izu-Bonin-Mariana boninites , 2007 .

[29]  M. Sudo,et al.  Initiation and propagation of subduction along the Philippine Trench: evidence from the temporal and spatial distribution of volcanoes , 2004 .

[30]  Arie P. van den Berg,et al.  On the role of subducting oceanic plateaus in the development of shallow flat subduction , 2002 .

[31]  D. Yuen,et al.  The effects of temperature-dependent viscosity on mantle convection with the two major phase transitions , 1995 .

[32]  Y. Iryu,et al.  Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores , 2010 .

[33]  N. Bellahsen,et al.  Dynamics of Subduction and Plate Motion in Laboratory Experiments. , 2004 .

[34]  J. Hunen,et al.  Collisional processes and links to episodic changes in subduction zones. , 2015 .

[35]  J. Ali,et al.  Philippine Sea Plate motion history: Eocene-Recent record from ODP Site 1201, central West Philippine Basin , 2015 .

[36]  L. Royden,et al.  Anomalously fast convergence of India and Eurasia caused by double subduction , 2015 .

[37]  Hua-Wei Zhou Mapping of P-wave slab anomalies beneath the Tonga, Kermadec and New Hebrides arcs , 1990 .

[38]  D. Stegman,et al.  Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation , 2008 .

[39]  David A. Yuen,et al.  The effects of a composite non-Newtonian and Newtonian rheology on mantle convection , 1993 .

[40]  T. Geenen,et al.  Using open sidewalls for modelling self-consistent lithosphere subduction dynamics , 2012 .

[41]  C. Faccenna,et al.  Trench migration, net rotation and slab-mantle coupling , 2008 .

[42]  Dapeng Zhao,et al.  High‐resolution mantle tomography of China and surrounding regions , 2006 .

[43]  H. Čížková,et al.  Stress distribution within subducting slabs and their deformation in the transition zone , 2007 .

[44]  K. Otsuki Westward migration of the Izu-Bonin Trench, northward motion of the Philippine Sea Plate, and their relationships to the Cenozoic tectonics of Japanese island arcs , 1990 .

[45]  Gavin P. Hayes,et al.  Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity , 2013 .

[46]  H. Čížková,et al.  The effects of rheological decoupling on slab deformation in the Earth’s upper mantle , 2013, Studia Geophysica et Geodaetica.

[47]  T. Yoshino,et al.  P‐V‐T relations of MgSiO3 perovskite determined by in situ X‐ray diffraction using a large‐volume high‐pressure apparatus , 2009 .

[48]  M. Billen Slab dynamics in the transition zone , 2010 .