Geometry of log-concave Ensembles of random matrices and approximate reconstruction

[1]  Alexander E. Litvak,et al.  Condition number of a square matrix with i.i.d. columns drawn from a convex body , 2012 .

[2]  R. Adamczak,et al.  Chevet type inequality and norms of submatrices , 2011, 1107.4066.

[3]  Rafal Latala Order statistics and concentration of lr norms for log-concave vectors , 2011 .

[4]  R. Adamczak,et al.  Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.

[5]  S. Mendelson Empirical Processes with a Bounded Ψ1 Diameter , 2010 .

[6]  R. Adamczak,et al.  Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling , 2009, 0904.4723.

[7]  R. Adamczak,et al.  Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.

[8]  Alexander E. Litvak,et al.  Smallest singular value of random matrices with independent columns , 2008 .

[9]  S. Mendelson,et al.  Reconstruction and Subgaussian Operators in Asymptotic Geometric Analysis , 2007 .

[10]  G. Paouris Concentration of mass on convex bodies , 2006 .

[11]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[12]  David L. Donoho,et al.  Neighborly Polytopes And Sparse Solution Of Underdetermined Linear Equations , 2005 .

[13]  J. Bourgain Random Points in Isotropic Convex Sets , 1998 .

[14]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[15]  Miklós Simonovits,et al.  Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.

[16]  Miklós Simonovits,et al.  Szemerédi's Partition and Quasirandomness , 1991, Random Struct. Algorithms.