Angular momentum and memory effect

A BSTRACT . It is a long-standing problem in general relativity that the notion of angular momentum of an isolated system has supertranslation ambiguity. In this paper, we argue that the ambiguity is essentially because of the gravitational wave memory. When properly subtracting the memory effect of the observer, one can introduce a supertranslation invariant definition of the angular momentum at null infinity even for dynamical process.

[1]  M. Porrati,et al.  Supertranslation-Invariant Formula for the Angular Momentum Flux in Gravitational Scattering. , 2022, Physical review letters.

[2]  Xiaoning Wu,et al.  On the angular momentum of compact binary coalescence , 2022, Communications in Theoretical Physics.

[3]  C. Heissenberg,et al.  Angular momentum of zero-frequency gravitons , 2022, Journal of High Energy Physics.

[4]  A. Manohar,et al.  Radiated Angular Momentum and Dissipative Effects in Classical Scattering. , 2022, Physical review letters.

[5]  M. Porrati,et al.  Supertranslation-invariant dressed Lorentz charges , 2022, Journal of High Energy Physics.

[6]  G. Veneziano,et al.  Angular momentum loss in gravitational scattering, radiation reaction, and the Bondi gauge ambiguity , 2022, Physics Letters B.

[7]  Shing-Tung Yau,et al.  BMS Charges Without Supertranslation Ambiguity , 2021, Communications in Mathematical Physics.

[8]  D. Nichols,et al.  Classical and Quantized General-Relativistic Angular Momentum , 2021, 2103.17103.

[9]  Shing-Tung Yau,et al.  Supertranslation invariance of angular momentum , 2021, Advances in Theoretical and Mathematical Physics.

[10]  L. Blanchet,et al.  Multipole expansion of gravitational waves: from harmonic to Bondi coordinates , 2020, Journal of High Energy Physics.

[11]  T. Damour Radiative contribution to classical gravitational scattering at the third order in G , 2020, 2010.01641.

[12]  P. Mao,et al.  Gravitational and electromagnetic memory , 2019, 1912.01840.

[13]  G. Barnich,et al.  BMS current algebra in the context of the Newman–Penrose formalism , 2019, Classical and Quantum Gravity.

[14]  A. Ashtekar,et al.  Compact binary coalescences: The subtle issue of angular momentum , 2019, Physical Review D.

[15]  R. Oliveri,et al.  The Poincaré and BMS flux-balance laws with application to binary systems , 2019, Journal of High Energy Physics.

[16]  C. Cheung,et al.  Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order. , 2019, Physical review letters.

[17]  D. Nichols,et al.  Persistent gravitational wave observables: General framework , 2018, Physical Review D.

[18]  P. Mao,et al.  More on gravitational memory , 2018, Journal of High Energy Physics.

[19]  G. Compère,et al.  Superboost transitions, refraction memory and super-Lorentz charge algebra , 2018, Journal of High Energy Physics.

[20]  Sotaro Sugishita,et al.  Notes on the gravitational, electromagnetic and axion memory effects , 2018, Journal of High Energy Physics.

[21]  G. Gibbons,et al.  Velocity Memory Effect for polarized gravitational waves , 2018, 1802.09061.

[22]  P. Zhang,et al.  Memory effect for impulsive gravitational waves , 2017, 1709.02299.

[23]  A. Strominger Lectures on the Infrared Structure of Gravity and Gauge Theory , 2017, 1703.05448.

[24]  G. Gibbons,et al.  The Memory Effect for Plane Gravitational Waves , 2017, 1704.05997.

[25]  G. Compère,et al.  Vacua of the gravitational field , 2016, 1601.04958.

[26]  G. Barnich,et al.  Finite BMS transformations , 2016, 1601.04090.

[27]  G. Barnich,et al.  Notes on the BMS group in three dimensions: II. Coadjoint representation , 2015, 1502.00010.

[28]  D. Nichols,et al.  Observer dependence of angular momentum in general relativity and its relationship to the gravitational-wave memory effect , 2014, 1411.4599.

[29]  A. Zhiboedov,et al.  Gravitational memory, BMS supertranslations and soft theorems , 2014, 1411.5745.

[30]  J. Winicour,et al.  Global aspects of radiation memory , 2014, 1407.0259.

[31]  L. Bieri,et al.  An electromagnetic analogue of gravitational wave memory , 2013, 1307.5098.

[32]  G. Barnich,et al.  A note on the Newman-Unti group , 2011 .

[33]  C. Kozameh,et al.  Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation , 2009, Living reviews in relativity.

[34]  A. Helfer Angular momentum at null infinity , 2008 .

[35]  G. Compère,et al.  Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions , 2006, gr-qc/0610130.

[36]  L. Szabados Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article , 2004, Living reviews in relativity.

[37]  A. Rizzi Angular Momentum in General Relativity , 1997 .

[38]  A. Ashtekar,et al.  Asymptotic structure of symmetry reduced general relativity , 1996, gr-qc/9608042.

[39]  J. Frauendiener Note on the memory effect , 1992 .

[40]  Thorne,et al.  Gravitational-wave bursts with memory: The Christodoulou effect. , 1992, Physical review. D, Particles and fields.

[41]  Wiseman,et al.  Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation. , 1991, Physical review. D, Particles and fields.

[42]  Christodoulou,et al.  Nonlinear nature of gravitation and gravitational-wave experiments. , 1991, Physical review letters.

[43]  K. Thorne,et al.  Gravitational-wave bursts with memory and experimental prospects , 1987, Nature.

[44]  V. Braginsky,et al.  Kinematic Resonance and Memory Effect in Free Mass Gravitational Antennas , 1986 .

[45]  A. Ashtekar,et al.  Linkages and Hamiltonians at null infinity , 1982 .

[46]  R. Penrose Quasi-local mass and angular momentum in general relativity , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  R. Penrose SOME UNSOLVED PROBLEMS IN CLASSICAL GENERAL RELATIVITY , 1982 .

[48]  A. Ashtekar,et al.  Symplectic geometry of radiative modes and conserved quantities at null infinity , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[49]  R. Geroch,et al.  Linkages in general relativity , 1981 .

[50]  M. Streubel “Conserved” quantities for isolated gravitational systems , 1978 .

[51]  C. Prior,et al.  Angular momentum in general relativity I. Definition and asymptotic behaviour , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[52]  Kriiger,et al.  Relativistic motion of a charged particle in a plane electromagnetic wave with arbitrary amplitude , 1976 .

[53]  Y. Zel’dovich,et al.  Radiation of gravitational waves by a cluster of superdense stars , 1974 .

[54]  J. Winicour SOME TOTAL INVARIANTS OF ASYMPTOTICALLY FLAT SPACE-TIMES, , 1968 .

[55]  Roger Penrose,et al.  Note on the Bondi-Metzner-Sachs Group , 1966 .

[56]  R. Sachs Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  E. Newman,et al.  Behavior of Asymptotically Flat Empty Spaces , 1962 .

[58]  Hermann Bondi,et al.  Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  Roger Penrose,et al.  An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .