Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa)

[1]  A. Beja-Pereira,et al.  Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa) , 2012, BMC Research Notes.

[2]  Songnian Hu,et al.  Effectiveness of 10 polymorphic microsatellite markers for parentage and pedigree analysis in plateau pika (Ochotona curzoniae) , 2010, BMC Genetics.

[3]  Jinlian Wang,et al.  COLONY: a program for parentage and sibship inference from multilocus genotype data , 2010, Molecular ecology resources.

[4]  鲁晶晶(编译),et al.  BMC Research Notes将免费提供更多黑色数据 , 2010 .

[5]  Gwenaël Kaminski,et al.  Socio‐genetic structure and mating system of a wild boar population , 2009 .

[6]  E. J. Pollak,et al.  Beef symposium: the evolution of beef cattle genetic evaluation. , 2009, Journal of animal science.

[7]  L. Alexander,et al.  Physical assignments of 68 porcine cosmid and lambda clones containing polymorphic microsatellites , 2009, Mammalian Genome.

[8]  S. H. Li,et al.  Genetic variation and phylogenetics of Lanyu and exotic pig breeds in Taiwan analyzed by nineteen microsatellite markers. , 2009, Journal of animal science.

[9]  A. Beja-Pereira,et al.  Paternity assessment in free-ranging wild boar (Sus scrofa) – Are littermates full-sibs? , 2008 .

[10]  S. Kalinowski,et al.  Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment , 2007, Molecular ecology.

[11]  M. Groenen,et al.  Genetic Resources, Genome Mapping and Evolutionary Genomics of the Pig (Sus scrofa) , 2007, International journal of biological sciences.

[12]  V. Hipkins,et al.  Mitigating Scoring Errors in Microsatellite Data from Wild Populations , 2006 .

[13]  J. J. Valdez-Alarcón,et al.  Multiple mating and paternity determinations in domestic swine (Sus scrofa) , 2006 .

[14]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[15]  E. Matisoo-Smith,et al.  Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication , 2005, Science.

[16]  J. Hampton,et al.  A preliminary genetic study of the social biology of feral pigs in south-western Australia and the implications for management , 2004 .

[17]  Jinliang Wang,et al.  Sibship reconstruction from genetic data with typing errors. , 2004, Genetics.

[18]  Christian Schlötterer,et al.  The evolution of molecular markers — just a matter of fashion? , 2004, Nature Reviews Genetics.

[19]  A. Archibald,et al.  Characterization of 24 porcine (dA-dC)n-(dT-dG)n microsatellites: genotyping of unrelated animals from four breeds and linkage studies , 2004, Mammalian Genome.

[20]  Gordon Luikart,et al.  DNA markers reveal the complexity of livestock domestication , 2003, Nature Reviews Genetics.

[21]  P. Fernández-Llario,et al.  Population structure of the wild boar (Sus scrofa) in two Mediterranean habitats in the western Iberian Peninsula , 2003 .

[22]  C. Ernst,et al.  Mapping of calpastatin and three microsatellites to porcine chromosome 2q2.1-q2.4. , 1998, Animal genetics.

[23]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[24]  H. Ellegren,et al.  A physically anchored linkage map of pig chromosome 1 uncovers sex- and position-specific recombination rates. , 1994, Genomics.

[25]  L. Andersson,et al.  A primary linkage map of the porcine genome reveals a low rate of genetic recombination. , 1994, Genetics.

[26]  L. Alexander,et al.  A microsatellite linkage map of the porcine genome. , 1994, Genetics.