Near-optimal deterministic algorithms for volume computation via M-ellipsoids
暂无分享,去创建一个
[1] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[2] B. Klartag. On convex perturbations with a bounded isotropic constant , 2006 .
[3] G. C. Shephard,et al. The difference body of a convex body , 1957 .
[4] M. Simonovits,et al. Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .
[5] D. R. Lewis. Ellipsoids defined by Banach ideal norms , 1979 .
[6] Vikraman Arvind,et al. Some Sieving Algorithms for Lattice Problems , 2008, FSTTCS.
[7] Santosh S. Vempala,et al. Recent Progress and Open Problems in Algorithmic Convex Geometry , 2010, FSTTCS.
[8] Martin E. Dyer,et al. A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.
[9] Santosh S. Vempala,et al. Enumerative Lattice Algorithms in any Norm Via M-ellipsoid Coverings , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.
[10] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[11] J. Lindenstrauss,et al. Geometric Aspects of Functional Analysis , 1987 .
[12] Nicole Tomczak-Jaegermann,et al. Projections onto Hilbertian subspaces of Banach spaces , 1979 .
[13] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[14] Zoltán Füredi,et al. Computing the volume is difficult , 1986, STOC '86.
[15] Michael J. Todd,et al. Polynomial Algorithms for Linear Programming , 1988 .
[16] G. Pisier. Remarques sur un résultat non publié de B. Maurey , 1981 .
[17] Santosh S. Vempala,et al. Deterministic construction of an approximate M-ellipsoid and its applications to derandomizing lattice algorithms , 2011, SODA.
[18] Zoltán Füredi,et al. Approximation of the sphere by polytopes having few vertices , 1988 .
[19] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[20] Vitali Milman,et al. Isomorphic symmetrization and geometric inequalities , 1988 .
[21] Ravi Kumar,et al. A sieve algorithm for the shortest lattice vector problem , 2001, STOC '01.
[22] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[23] György Elekes,et al. A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..
[24] DyerMartin,et al. A random polynomial-time algorithm for approximating the volume of convex bodies , 1991 .
[25] Daniele Micciancio,et al. A Deterministic Single Exponential Time Algorithm for Most Lattice Problems based on Voronoi Cell Computations ( Extended Abstract ) , 2009 .
[26] V. Milman,et al. Chapter 17 - Euclidean Structure in Finite Dimensional Normed Spaces , 2001 .
[27] N. Z. Shor. Cut-off method with space extension in convex programming problems , 1977, Cybernetics.
[28] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[29] Santosh S. Vempala,et al. Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..
[30] Miklós Simonovits,et al. Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.