Near-optimal deterministic algorithms for volume computation via M-ellipsoids

We give a deterministic algorithm for computing an M-ellipsoid of a convex body, matching a known lower bound. This leads to a nearly optimal deterministic algorithm for estimating the volume of a convex body and improved deterministic algorithms for fundamental lattice problems under general norms.

[1]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[2]  B. Klartag On convex perturbations with a bounded isotropic constant , 2006 .

[3]  G. C. Shephard,et al.  The difference body of a convex body , 1957 .

[4]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[5]  D. R. Lewis Ellipsoids defined by Banach ideal norms , 1979 .

[6]  Vikraman Arvind,et al.  Some Sieving Algorithms for Lattice Problems , 2008, FSTTCS.

[7]  Santosh S. Vempala,et al.  Recent Progress and Open Problems in Algorithmic Convex Geometry , 2010, FSTTCS.

[8]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[9]  Santosh S. Vempala,et al.  Enumerative Lattice Algorithms in any Norm Via M-ellipsoid Coverings , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[10]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[11]  J. Lindenstrauss,et al.  Geometric Aspects of Functional Analysis , 1987 .

[12]  Nicole Tomczak-Jaegermann,et al.  Projections onto Hilbertian subspaces of Banach spaces , 1979 .

[13]  B. Bollobás THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .

[14]  Zoltán Füredi,et al.  Computing the volume is difficult , 1986, STOC '86.

[15]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[16]  G. Pisier Remarques sur un résultat non publié de B. Maurey , 1981 .

[17]  Santosh S. Vempala,et al.  Deterministic construction of an approximate M-ellipsoid and its applications to derandomizing lattice algorithms , 2011, SODA.

[18]  Zoltán Füredi,et al.  Approximation of the sphere by polytopes having few vertices , 1988 .

[19]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[20]  Vitali Milman,et al.  Isomorphic symmetrization and geometric inequalities , 1988 .

[21]  Ravi Kumar,et al.  A sieve algorithm for the shortest lattice vector problem , 2001, STOC '01.

[22]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[23]  György Elekes,et al.  A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..

[24]  DyerMartin,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991 .

[25]  Daniele Micciancio,et al.  A Deterministic Single Exponential Time Algorithm for Most Lattice Problems based on Voronoi Cell Computations ( Extended Abstract ) , 2009 .

[26]  V. Milman,et al.  Chapter 17 - Euclidean Structure in Finite Dimensional Normed Spaces , 2001 .

[27]  N. Z. Shor Cut-off method with space extension in convex programming problems , 1977, Cybernetics.

[28]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[29]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..

[30]  Miklós Simonovits,et al.  Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.