Targeted nanoagents for the detection of cancers

[1]  R. V. Omkumar,et al.  Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. , 2010, Biotechnology advances.

[2]  Ralph Weissleder,et al.  Near-infrared fluorescence: application to in vivo molecular imaging. , 2010, Current opinion in chemical biology.

[3]  Xue-Long Sun,et al.  Recent developments in carbohydrate‐decorated targeted drug/gene delivery , 2009, Medicinal research reviews.

[4]  Ralph Weissleder,et al.  Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. , 2010, Bioconjugate chemistry.

[5]  Muthu Kumara Gnanasammandhan,et al.  Optical imaging-guided cancer therapy with fluorescent nanoparticles , 2010, Journal of The Royal Society Interface.

[6]  Xiaoyuan Chen,et al.  Characterizing breast cancer xenograft epidermal growth factor receptor expression by using near-infrared optical imaging , 2009, Acta radiologica.

[7]  T. Meyer,et al.  Imaging in targeted delivery of therapy to cancer , 2009, Targeted Oncology.

[8]  Hsin-Ell Wang,et al.  Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy. , 2009, Anticancer research.

[9]  Ralph Weissleder,et al.  Hybrid In Vivo FMT-CT Imaging of Protease Activity in Atherosclerosis With Customized Nanosensors , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[10]  Valesca P Retèl,et al.  Review on early technology assessments of nanotechnologies in oncology , 2009, Molecular oncology.

[11]  Shuming Nie,et al.  Receptor-Targeted Nanoparticles for In vivo Imaging of Breast Cancer , 2009, Clinical Cancer Research.

[12]  Xiang-ke Du,et al.  Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-tesla magnetic resonance scanner , 2009, Acta radiologica.

[13]  Enzo Terreno,et al.  Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. , 2009, Accounts of chemical research.

[14]  T. Meade,et al.  Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging , 2009, MRS bulletin.

[15]  P. Low,et al.  Folate-targeted therapeutic and imaging agents for cancer. , 2009, Current opinion in chemical biology.

[16]  W. Soboyejo,et al.  LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI , 2009 .

[17]  Xing Wu,et al.  MR imaging of tumor angiogenesis using sterically stabilized Gd-DTPA liposomes targeted to CD105. , 2009, European journal of radiology.

[18]  Greg M Thurber,et al.  18F labeled nanoparticles for in vivo PET-CT imaging. , 2009, Bioconjugate chemistry.

[19]  Samuel A. Wickline,et al.  Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics , 2009, Annals of Biomedical Engineering.

[20]  Shuming Nie,et al.  Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. , 2008, Small.

[21]  G. Liu,et al.  Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI , 2009, JBIC Journal of Biological Inorganic Chemistry.

[22]  J. Dobson,et al.  Development of Superparamagnetic Iron Oxide Nanoparticles (SPIONS) for Translation to Clinical Applications , 2008, IEEE Transactions on NanoBioscience.

[23]  A. Maurer Combined imaging modalities: PET/CT and SPECT/CT. , 2008, Health physics.

[24]  H. Fessi,et al.  Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. , 2008, Advanced drug delivery reviews.

[25]  Michael J Sailor,et al.  Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. , 2008, Angewandte Chemie.

[26]  Ralph Weissleder,et al.  Multifunctional magnetic nanoparticles for targeted imaging and therapy. , 2008, Advanced drug delivery reviews.

[27]  Ting Song,et al.  A review of imaging techniques for systems biology , 2008, BMC Systems Biology.

[28]  Chenjie Xu,et al.  PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles , 2008, Journal of Nuclear Medicine.

[29]  L. Fass Imaging and cancer: A review , 2008, Molecular oncology.

[30]  Robert Langer,et al.  Nanotechnology and Aptamers: Applications in Drug Delivery , 2022 .

[31]  Ralph Weissleder,et al.  Detection of early prostate cancer using a hepsin-targeted imaging agent. , 2008, Cancer research.

[32]  Gerhard Ziemer,et al.  CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics , 2008, International journal of molecular sciences.

[33]  Michael Scott,et al.  Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics , 2007, International journal of nanomedicine.

[34]  Jianghong Rao,et al.  Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. , 2008, Cancer biomarkers : section A of Disease markers.

[35]  Robert M. Hoffman,et al.  Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins , 2008, Clinical & Experimental Metastasis.

[36]  A. Karlström,et al.  (99m)Tc-maEEE-Z(HER2:342), an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. , 2007, Bioconjugate chemistry.

[37]  Robert Langer,et al.  Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. , 2007, Nano letters.

[38]  Eva M. Sevick-Muraca,et al.  Dual-Labeled Trastuzumab-Based Imaging Agent for the Detection of Human Epidermal Growth Factor Receptor 2 Overexpression in Breast Cancer , 2007, Journal of Nuclear Medicine.

[39]  Zhong-gao Gao,et al.  Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. , 2007, Journal of the National Cancer Institute.

[40]  R. Weissleder,et al.  Targeted delivery of multifunctional magnetic nanoparticles. , 2007, Nanomedicine.

[41]  Jonathan R Lindner,et al.  Molecular imaging with targeted contrast ultrasound. , 2007, Current opinion in biotechnology.

[42]  Michael J Sailor,et al.  Biomimetic amplification of nanoparticle homing to tumors , 2007, Proceedings of the National Academy of Sciences.

[43]  Jørgen Arendt Jensen,et al.  Medical ultrasound imaging. , 2007, Progress in biophysics and molecular biology.

[44]  Shelton D Caruthers,et al.  Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. , 2006, Nanomedicine.

[45]  H. Maeda,et al.  Exploiting the enhanced permeability and retention effect for tumor targeting. , 2006, Drug discovery today.

[46]  V. Ntziachristos Fluorescence molecular imaging. , 2006, Annual review of biomedical engineering.

[47]  Susannah H Bloch,et al.  Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy , 2006, Molecular imaging.

[48]  R. Weissleder,et al.  Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. , 2006, Bioconjugate chemistry.

[49]  M. Kattan,et al.  Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. , 2006, Journal of the National Cancer Institute.

[50]  Robert Langer,et al.  Nanoparticle–aptamer bioconjugates for cancer targeting , 2006, Expert opinion on drug delivery.

[51]  Brij M Moudgil,et al.  Fluorescent Nanoparticle Probes for Cancer Imaging , 2005, Technology in cancer research & treatment.

[52]  Klaas Nicolay,et al.  MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[53]  J. Eastham,et al.  Role of salvage radical prostatectomy for recurrent prostate cancer after radiation therapy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[54]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[55]  Sanjiv S. Gambhir,et al.  Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice , 2005 .

[56]  Ralph Weissleder,et al.  In vivo assessment of RAS-dependent maintenance of tumor angiogenesis by real-time magnetic resonance imaging. , 2005, Cancer research.

[57]  Jonathan R. Lindner,et al.  Molecular and Cellular Imaging with Targeted Contrast Ultrasound , 2005, Proceedings of the IEEE.

[58]  B. Han,et al.  Urokinase-type plasminogen activator system and breast cancer (Review). , 2005, Oncology reports.

[59]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[60]  Zhen Cheng,et al.  Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. , 2005, Bioconjugate chemistry.

[61]  W. Curati,et al.  Ultrasound, CT, and MRI comparison in primary and secondary tumors of the liver , 2005, Gastrointestinal Radiology.

[62]  Ralph Weissleder,et al.  Sensitive, Noninvasive Detection of Lymph Node Metastases , 2004, PLoS medicine.

[63]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[64]  André Luxen,et al.  Fluorinated tracers for imaging cancer with positron emission tomography , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[65]  Roy S Herbst,et al.  Review of epidermal growth factor receptor biology. , 2004, International journal of radiation oncology, biology, physics.

[66]  R. Weissleder,et al.  Fluorescence molecular imaging of small animal tumor models. , 2004, Current molecular medicine.

[67]  P. Choong,et al.  Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases — A comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases , 2000, Breast Cancer Research and Treatment.

[68]  B. Felding-Habermann,et al.  Integrin adhesion receptors in tumor metastasis , 2004, Clinical & Experimental Metastasis.

[69]  J. Hornaday,et al.  Cancer Facts & Figures 2004 , 2004 .

[70]  R. Khokha,et al.  Molecular mechanisms of tumor invasion and metastasis: an integrated view. , 2003, Current molecular medicine.

[71]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[72]  Joseph P. Hornak,et al.  The Basics of MRI , 2003, WWW 2003.

[73]  R. Weissleder,et al.  Splenic Imaging with Ultrasmall Superparamagnetic Iron Oxide Ferumoxtran-10 (AMI-7227): Preliminary Observations , 2001, Journal of computer assisted tomography.

[74]  H. Maeda The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. , 2001, Advances in enzyme regulation.

[75]  R. Vile,et al.  Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[76]  R. Edelman,et al.  Multicentre dose-ranging study on the efficacy of USPIO ferumoxtran-10 for liver MR imaging. , 2000, Clinical radiology.

[77]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[78]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[79]  M. Hung,et al.  Basic science of HER-2/neu: a review. , 1999, Seminars in oncology.

[80]  W. Phillips,et al.  Delivery of gamma-imaging agents by liposomes. , 1999, Advanced drug delivery reviews.

[81]  R Weissleder,et al.  Improved delineation of human brain tumors on MR images using a long‐circulating, superparamagnetic iron oxide agent , 1999, Journal of magnetic resonance imaging : JMRI.

[82]  Taylor Murray,et al.  Cancer statistics, 1999 , 1999, CA: a cancer journal for clinicians.

[83]  W. Nelp,et al.  Radiation absorbed dose from indium-111-CYT-356. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[84]  R K Jain,et al.  Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. , 1995, Cancer research.

[85]  R. Edelman,et al.  Magnetic resonance imaging (2) , 1993, The New England journal of medicine.

[86]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[87]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[88]  C. Compton,et al.  Ferrite-enhanced MR imaging of hepatic lymphoma: an experimental study in rats. , 1987, AJR. American journal of roentgenology.

[89]  R. Weissleder,et al.  MR imaging of splenic metastases: ferrite-enhanced detection in rats. , 1987, AJR. American journal of roentgenology.

[90]  T J Brady,et al.  Ferrite particles: a superparamagnetic MR contrast agent for enhanced detection of liver carcinoma. , 1987, Radiology.

[91]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[92]  M. Moseley,et al.  Magnetic resonance imaging and spectroscopy of hepatic iron overload. , 1985, Radiology.

[93]  C. Mittelstaedt,et al.  Ultrasound as a useful imaging modality for tumor detection and staging. , 1980, Cancer research.

[94]  F. Jöbsis Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. , 1977, Science.

[95]  Paul A. Bottomley,et al.  19F magnetic resonance imaging , 1977 .

[96]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[97]  G. Moore,et al.  The clinical use of fluorescein in neurosurgery; the localization of brain tumors. , 1948, Journal of neurosurgery.