Investigating potentially salvageable penumbra tissue in an in vivo model of transient ischemic stroke using sodium, diffusion, and perfusion magnetic resonance imaging

[1]  Colin M. Wilson,et al.  [18F]FDG-PET Combined with MRI Elucidates the Pathophysiology of Traumatic Brain Injury in Rats. , 2017, Journal of neurotrauma.

[2]  Friedrich Wetterling,et al.  Scan time reduction in ²³Na-Magnetic Resonance Imaging using the chemical shift imaging sequence: Evaluation of an iterative reconstruction method. , 2015, Zeitschrift fur medizinische Physik.

[3]  Botros B. Shenoda The Role of Na+/Ca2+ Exchanger Subtypes in Neuronal Ischemic Injury , 2015, Translational Stroke Research.

[4]  Botros B Shenoda,et al.  The Role of Na+/Ca2+ Exchanger Subtypes in Neuronal Ischemic Injury , 2015, Translational Stroke Research.

[5]  A. Fagan,et al.  Sodium-23 Magnetic Resonance Imaging Has Potential for Improving Penumbra Detection but Not for Estimating Stroke Onset Time , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  L. Schad,et al.  Thrombolysis in Experimental Cerebral Amyloid Angiopathy and the Risk of Secondary Intracerebral Hemorrhage , 2014, Stroke.

[7]  Ravinder R. Regatte,et al.  A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging , 2014, Scientific Reports.

[8]  S. Kanekar,et al.  Imaging of stroke: Part 2, Pathophysiology at the molecular and cellular levels and corresponding imaging changes. , 2012, AJR. American journal of roentgenology.

[9]  F. Wetterling,et al.  Sodium-23 magnetic resonance imaging during and after transient cerebral ischemia: multinuclear stroke protocols for double-tuned 23Na/1H resonator systems , 2012, Physics in medicine and biology.

[10]  Y. Qian,et al.  Sodium MRI and the Assessment of Irreversible Tissue Damage During Hyper-Acute Stroke , 2012, Translational Stroke Research.

[11]  C. Beaulieu,et al.  Relationship between sodium intensity and perfusion deficits in acute ischemic stroke , 2011, Journal of magnetic resonance imaging : JMRI.

[12]  W. Heiss The Concept of the Penumbra: can it be Translated to Stroke Management? , 2010, International journal of stroke : official journal of the International Stroke Society.

[13]  M. Suhail Na+, K+-ATPase: Ubiquitous Multifunctional Transmembrane Protein and its Relevance to Various Pathophysiological Conditions , 2010, Journal of clinical medicine research.

[14]  A. Dominiczak,et al.  Differences in the Evolution of the Ischemic Penumbra in Stroke-Prone Spontaneously Hypertensive and Wistar-Kyoto Rats , 2009, Stroke.

[15]  F. Boada,et al.  Sodium time course using 23Na MRI in reversible focal brain ischemia in the monkey , 2009, Journal of magnetic resonance imaging : JMRI.

[16]  M. Ginsberg Current status of neuroprotection for cerebral ischemia: synoptic overview. , 2009, Stroke.

[17]  D. Graham,et al.  Potential use of Oxygen as a Metabolic Biosensor in Combination with T2*-Weighted MRI to Define the Ischemic Penumbra , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  T. Neumann-Haefelin,et al.  MRI-Based and CT-Based Thrombolytic Therapy in Acute Stroke Within and Beyond Established Time Windows: An Analysis of 1210 Patients , 2007, Stroke.

[19]  Denise Davis,et al.  Sodium MR imaging of acute and subacute stroke for assessment of tissue viability. , 2005, Neuroimaging clinics of North America.

[20]  S. Warach,et al.  The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): A Phase II MRI-Based 9-Hour Window Acute Stroke Thrombolysis Trial With Intravenous Desmoteplase , 2005, Stroke.

[21]  C. V. van Echteld,et al.  Assessment of Myocardial Viability by Intracellular 23Na Magnetic Resonance Imaging , 2004, Circulation.

[22]  J. Alger,et al.  Evolving Paradigms in Neuroimaging of the Ischemic Penumbra , 2004, Stroke.

[23]  M. Hove,et al.  Na+ overload during ischemia and reperfusion in rat hearts: Comparison of the Na+/H+ exchange blockers EIPA, cariporide and eniporide , 2003, Molecular and Cellular Biochemistry.

[24]  T. Nagaoka,et al.  Cerebral ischemic hypoxia: discrepancy between apparent diffusion coefficients and histologic changes in rats. , 2000, Radiology.

[25]  C. Warlow,et al.  Systematic review of evidence on thrombolytic therapy for acute ischaemic stroke , 1997, The Lancet.

[26]  L. Annunziato,et al.  Pharmacological evidence that the activation of the Na+‐Ca2+ exchanger protects C6 glioma cells during chemical hypoxia , 1997, British journal of pharmacology.

[27]  S B Reeder,et al.  Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. , 1997, Circulation.

[28]  R A Knight,et al.  Temporal evolution of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging. , 1991, Stroke.

[29]  B. Siesjö,et al.  Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat , 2004, Experimental Brain Research.

[30]  J. Miller,et al.  Transient Focal Cerebral Ischemia , 2001 .

[31]  T. Ruigrok,et al.  The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: consequences for post-ischemic recovery. , 1997, Journal of molecular and cellular cardiology.

[32]  P. Weinstein,et al.  Reversible middle cerebral artery occlusion without craniectomy in rats. , 1989, Stroke.