Chondroitin sulfate is required for follicle epithelial integrity and organ shape maintenance in Drosophila

ABSTRACT Heparan sulfate (HS) and chondroitin sulfate (CS) are evolutionarily conserved glycosaminoglycans that are found in most animal species, including the genetically tractable model organism Drosophila. In contrast to extensive in vivo studies elucidating co-receptor functions of Drosophila HS proteoglycans (PGs), only a limited number of studies have been conducted for those of CSPGs. To investigate the global function of CS in development, we generated mutants for Chondroitin sulfate synthase (Chsy), which encodes the Drosophila homolog of mammalian chondroitin synthase 1, a crucial CS biosynthetic enzyme. Our characterizations of the Chsy mutants indicated that a fraction survive to adult stage, which allowed us to analyze the morphology of the adult organs. In the ovary, Chsy mutants exhibited altered stiffness of the basement membrane and muscle dysfunction, leading to a gradual degradation of the gross organ structure as mutant animals aged. Our observations show that normal CS function is required for the maintenance of the structural integrity of the ECM and gross organ architecture.

[1]  H. Nakato,et al.  Regulation of morphogen pathways by a Drosophila chondroitin sulfate proteoglycan Windpipe , 2023, Journal of cell science.

[2]  C. Dahmann,et al.  Distinct contributions of ECM proteins to basement membrane mechanical properties in Drosophila. , 2022, Development.

[3]  A. Tivanski,et al.  Fascin limits Myosin activity within Drosophila border cells to control substrate stiffness and promote migration , 2021, bioRxiv.

[4]  Owen J. Marshall,et al.  Stem cell niche organization in the Drosophila ovary requires the ECM component Perlecan , 2021, Current Biology.

[5]  M. Malbouyres,et al.  A dynamic and mosaic basement membrane controls cell intercalation in Drosophila ovaries , 2021, Development.

[6]  J. Ireland Basement membrane , 2020, Journal of clinical pathology. Supplement.

[7]  J. Huynh,et al.  Collective Cell Sorting Requires Contractile Cortical Waves in Germline Cells , 2020, Current Biology.

[8]  S. Streichan,et al.  Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation , 2019, Nature Communications.

[9]  Xin Liu,et al.  Establishment and characterization of Drosophila cell lines mutant for heparan sulfate modifying enzymes. , 2019, Glycobiology.

[10]  F. Schnorrer,et al.  A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo , 2019, PLoS biology.

[11]  A. Page-McCaw,et al.  Basement membrane mechanics shape development: Lessons from the fly. , 2019, Matrix biology : journal of the International Society for Matrix Biology.

[12]  Masahiko Takemura,et al.  Chondroitin sulfate proteoglycan Windpipe modulates Hedgehog signaling in Drosophila , 2018, bioRxiv.

[13]  Antoine Borensztejn,et al.  Corrigendum to "JAK/STAT signaling prevents excessive apoptosis to ensure maintenance of the interfollicular stalk critical for Drosophila oogenesis" [Dev. Biol. 438 (2018) 1-9]. , 2018, Developmental biology.

[14]  A. Boudaoud,et al.  Variations in basement membrane mechanics are linked to epithelial morphogenesis , 2017, Development.

[15]  Waqas Nasir,et al.  Expanding the chondroitin glycoproteome of Caenorhabditis elegans , 2017, The Journal of Biological Chemistry.

[16]  B. Habermann,et al.  Atf3 links loss of epithelial polarity to defects in cell differentiation and cytoarchitecture , 2017, bioRxiv.

[17]  D. Bilder,et al.  A Cell Migration Tracking Tool Supports Coupling of Tissue Rotation to Elongation. , 2017, Cell reports.

[18]  J. C. Pastor-Pareja,et al.  Basement Membrane Manipulation in Drosophila Wing Discs Affects Dpp Retention but Not Growth Mechanoregulation. , 2017, Developmental cell.

[19]  D. Fletcher,et al.  Organ sculpting by patterned extracellular matrix stiffness , 2017, eLife.

[20]  C. García-Calderón,et al.  Kon-tiki enhances PS2 integrin adhesion and localizes its ligand, Thrombospondin, in the myotendinous junction , 2017, Journal of Cell Science.

[21]  Y. Saeki,et al.  Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues. , 2016, Experimental cell research.

[22]  S. Horne-Badovinac,et al.  Rab10-Mediated Secretion Synergizes with Tissue Movement to Build a Polarized Basement Membrane Architecture for Organ Morphogenesis. , 2016, Developmental cell.

[23]  S. Horne-Badovinac,et al.  Influence of ovarian muscle contraction and oocyte growth on egg chamber elongation in Drosophila , 2016, Development.

[24]  K. Franze,et al.  ECM-Regulator timp Is Required for Stem Cell Niche Organization and Cyst Production in the Drosophila Ovary , 2016, PLoS genetics.

[25]  S. Horne-Badovinac,et al.  Dynamic regulation of basement membrane protein levels promotes egg chamber elongation in Drosophila. , 2015, Developmental biology.

[26]  S. Horne-Badovinac,et al.  Round and round gets you somewhere: collective cell migration and planar polarity in elongating Drosophila egg chambers. , 2015, Current opinion in genetics & development.

[27]  Xinhua Lin,et al.  Windpipe Controls Drosophila Intestinal Homeostasis by Regulating JAK/STAT Pathway via Promoting Receptor Endocytosis and Lysosomal Degradation , 2015, PLoS genetics.

[28]  Guillaume Charras,et al.  Physical influences of the extracellular environment on cell migration , 2014, Nature Reviews Molecular Cell Biology.

[29]  P. Albanese,et al.  Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate. , 2014, Journal of neuropathology and experimental neurology.

[30]  Juan J Pérez-Moreno,et al.  The conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in Drosophila , 2014, Journal of Cell Science.

[31]  N. Berns,et al.  A genome-scale in vivo RNAi analysis of epithelial development in Drosophila identifies new proliferation domains outside of the stem cell niche , 2014, Journal of Cell Science.

[32]  J. Esko,et al.  Demystifying heparan sulfate-protein interactions. , 2014, Annual review of biochemistry.

[33]  Frank Schnorrer,et al.  Tension and Force-Resistant Attachment Are Essential for Myofibrillogenesis in Drosophila Flight Muscle , 2014, Current Biology.

[34]  S. Sant,et al.  Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications , 2014 .

[35]  Masahiko Takemura,et al.  Analysis of Drosophila Glucuronyl C5-Epimerase , 2013, The Journal of Biological Chemistry.

[36]  H. Kitagawa,et al.  Biosynthesis and function of chondroitin sulfate. , 2013, Biochimica et biophysica acta.

[37]  Sally Horne-Badovinac,et al.  Misshapen decreases integrin levels to promote epithelial motility and planar polarity in Drosophila , 2013, The Journal of cell biology.

[38]  Satoru Kobayashi,et al.  Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen , 2012, Development.

[39]  H. Kitagawa,et al.  Chondroitin Sulfate Is a Crucial Determinant for Skeletal Muscle Development/Regeneration and Improvement of Muscular Dystrophies* , 2012, The Journal of Biological Chemistry.

[40]  G. Haugstad Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications , 2012 .

[41]  I. Kozeretska,et al.  Role of the gene Miniature in Drosophila wing maturation , 2012, Genesis.

[42]  A. Peterson,et al.  Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. , 2012, Developmental biology.

[43]  William Menegas,et al.  A Screen for Round Egg Mutants in Drosophila Identifies Tricornered, Furry, and Misshapen as Regulators of Egg Chamber Elongation , 2012, G3: Genes | Genomes | Genetics.

[44]  David Bilder,et al.  Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. , 2012, Developmental cell.

[45]  T. Orr-Weaver,et al.  Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis , 2011, Proceedings of the National Academy of Sciences.

[46]  David Bilder,et al.  Global Tissue Revolutions in a Morphogenetic Movement Controlling Elongation , 2011, Science.

[47]  B. Merriman,et al.  Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. , 2010, American journal of human genetics.

[48]  R. Hegele,et al.  Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in chondroitin synthase 1, a potential target of BMP signaling. , 2010, American journal of human genetics.

[49]  Adam J. Kleinschmit,et al.  Drosophila heparan sulfate 6-O endosulfatase regulates Wingless morphogen gradient formation. , 2010, Developmental biology.

[50]  U. Tepass,et al.  Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis , 2009, Development.

[51]  Satoru Kobayashi,et al.  Drosophila glypicans regulate the germline stem cell niche , 2009, The Journal of cell biology.

[52]  U. Tepass,et al.  Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis , 2008, The Journal of cell biology.

[53]  Hilary L. Ashe,et al.  Type IV collagens regulate BMP signalling in Drosophila , 2008, Nature.

[54]  L. Cooley,et al.  Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps. , 2008, Developmental biology.

[55]  Stephen S. Gisselbrecht,et al.  The transmembrane protein Perdido interacts with Grip and integrins to mediate myotube projection and attachment in the Drosophila embryo , 2007, Development.

[56]  S. Selleck,et al.  Heparan sulfate proteoglycans at a glance , 2007, Journal of Cell Science.

[57]  Frank Schnorrer,et al.  The transmembrane protein Kon-tiki couples to Dgrip to mediate myotube targeting in Drosophila. , 2007, Developmental cell.

[58]  Norio Suzuki,et al.  Chondroitin acts in the guidance of gonadal distal tip cells in C. elegans. , 2006, Developmental biology.

[59]  M. Masu,et al.  Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling , 2006, The Journal of cell biology.

[60]  M. Pardue,et al.  The Journal of Cell Biology , 2002 .

[61]  Jeffrey D. Esko,et al.  Identification of novel chondroitin proteoglycans in Caenorhabditis elegans: embryonic cell division depends on CPG-1 and CPG-2 , 2006, The Journal of cell biology.

[62]  S. Hoffman,et al.  Versican expression during skeletal/joint morphogenesis and patterning of muscle and nerve in the embryonic mouse limb. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[63]  H. Kitagawa,et al.  Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans , 2003, Nature.

[64]  H. Horvitz,et al.  Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis , 2003, Nature.

[65]  M. M. Green,et al.  Hemocytes are essential for wing maturation in Drosophila melanogaster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  S. Selleck,et al.  Regulation of dally, an integral membrane proteoglycan, and its function during adult sensory organ formation of Drosophila. , 2001, Developmental biology.

[67]  D Bilder,et al.  Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. , 2000, Science.

[68]  S. Selleck,et al.  Structural Analysis of Glycosaminoglycans inDrosophila and Caenorhabditis elegans and Demonstration That tout-velu, a Drosophila Gene Related to EXT Tumor Suppressors, Affects Heparan Sulfate in Vivo * , 2000, The Journal of Biological Chemistry.

[69]  H. Horvitz,et al.  sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Koehl,et al.  A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. , 1993, Development.

[71]  E. Fischer-Friedrich,et al.  Stiffness Measurement of Drosophila Egg Chambers by Atomic Force Microscopy. , 2022, Methods in molecular biology.

[72]  H. Nakato,et al.  Heparan Sulfate Proteoglycans in the Stem Cell Niche: Lessons from Drosophila , 2021 .

[73]  Dr Parichehr Hanachi Chondroitin sulfate , 2018, Reactions Weekly.

[74]  H. Nakato,et al.  Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models. , 2016, International review of cell and molecular biology.

[75]  Jin-ping Li,et al.  Heparan Sulfate: Biosynthesis, Structure, and Function. , 2016, International review of cell and molecular biology.

[76]  Jennie B. Leach,et al.  Extracellular Matrix , 2015, Neuromethods.

[77]  U. Lindahl,et al.  Interactions between heparan sulfate and proteins-design and functional implications. , 2009, International review of cell and molecular biology.

[78]  M. Paddy,et al.  Tissue remodeling during maturation of the Drosophila wing. , 2007, Developmental biology.

[79]  S. Selleck,et al.  Order out of chaos: assembly of ligand binding sites in heparan sulfate. , 2002, Annual review of biochemistry.

[80]  E. Calossi Research article , 1999 .

[81]  Taeko Nishiwaki,et al.  chondroitin sulfate proteoglycan , 1994 .

[82]  E. Ruoslahti Structure and biology of proteoglycans. , 1988, Annual review of cell biology.

[83]  W. Comper,et al.  Physiological function of connective tissue polysaccharides. , 1978, Physiological reviews.