Optimal presentation of imagery with focus cues on multi-plane displays

We present a technique for displaying three-dimensional imagery of general scenes with nearly correct focus cues on multi-plane displays. These displays present an additive combination of images at a discrete set of optical distances, allowing the viewer to focus at different distances in the simulated scene. Our proposed technique extends the capabilities of multi-plane displays to general scenes with occlusions and non-Lambertian effects by using a model of defocus in the eye of the viewer. Requiring no explicit knowledge of the scene geometry, our technique uses an optimization algorithm to compute the images to be displayed on the presentation planes so that the retinal images when accommodating to different distances match the corresponding retinal images of the input scene as closely as possible. We demonstrate the utility of the technique using imagery acquired from both synthetic and real-world scenes, and analyze the system's characteristics including bounds on achievable resolution.

[1]  Gordon Wetzstein,et al.  A survey on computational displays: Pushing the boundaries of optics, computation, and perception , 2013, Comput. Graph..

[2]  Ken Perlin,et al.  An autostereoscopic display , 2000, SIGGRAPH.

[3]  Marc Levoy,et al.  Light field microscopy , 2006, ACM Trans. Graph..

[4]  Hong Hua,et al.  Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype , 2014, Journal of Display Technology.

[5]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, SIGGRAPH 2011.

[6]  Joshua Napoli,et al.  100-million-voxel volumetric display , 2002, SPIE Defense + Commercial Sensing.

[7]  Hong Hua,et al.  High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. , 2014, Optics express.

[8]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, ACM Trans. Graph..

[9]  Hong Hua,et al.  An optical see-through multi-focal-plane stereoscopic display prototype enabling nearly correct focus cues , 2013, Electronic Imaging.

[10]  A. Kak,et al.  Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm , 1984, Ultrasonic imaging.

[11]  S. Palmer,et al.  Edge-region grouping in figure-ground organization and depth perception. , 2008, Journal of experimental psychology. Human perception and performance.

[12]  Computational displays: combining optical fabrication, computational processing, and perceptual tricks to build the displays of the future , 2012, SIGGRAPH '12.

[13]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, ACM Trans. Graph..

[14]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[15]  Hideshi Yamada,et al.  Rendering for an Interactive 360 ◦ Light Field Display , 2007 .

[16]  John P. Frisby,et al.  Interaction of stereo, texture and outline cues in the shape perception of three-dimensional ridges , 1993, Vision Research.

[17]  S BanksMartin,et al.  Optimal presentation of imagery with focus cues on multi-plane displays , 2015 .

[18]  Martin S. Banks,et al.  Creating effective focus cues in multi-plane 3D displays , 2011, Optics express.

[19]  Sheng Liu,et al.  A systematic method for designing depth-fused multi-focal plane three-dimensional displays. , 2010, Optics express.

[20]  M. Ernst,et al.  Focus cues affect perceived depth. , 2005, Journal of vision.

[21]  Louise Ryana,et al.  Multiple-focal-planes 3D displays: A practical solution to the vergence-accommodation conflict? , 2012, 2012 International Conference on 3D Imaging (IC3D).

[22]  Kevin J. MacKenzie,et al.  Vergence and accommodation to multiple-image-plane stereoscopic displays: "real world" responses with practical image-plane separations? , 2012, J. Electronic Imaging.

[23]  University of California The Perception of Surface Material from Disparity and Focus Cues , .

[24]  Mtm Marc Lambooij,et al.  Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review , 2009 .

[25]  University of California,et al.  Correct Blur and Accommodation Information Is a Reliable Cue to Depth Ordering , .

[26]  David M. Hoffman,et al.  The zone of comfort: Predicting visual discomfort with stereo displays. , 2011, Journal of vision.

[27]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, ACM Trans. Graph..

[28]  Y. Takaki,et al.  Super multi-view display with a lower resolution flat-panel display. , 2011, Optics express.

[29]  Sheng Liu,et al.  A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues , 2010, IEEE Transactions on Visualization and Computer Graphics.

[30]  Gordon Wetzstein,et al.  Focus 3D: Compressive accommodation display , 2013, TOGS.

[31]  Gordon Wetzstein,et al.  Polarization fields: dynamic light field display using multi-layer LCDs , 2011, SA '11.

[32]  Wojciech Matusik,et al.  3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes , 2004, ACM Trans. Graph..

[33]  Yasuhiro Takaki,et al.  High-Density Directional Display for Generating Natural Three-Dimensional Images , 2006, Proceedings of the IEEE.

[34]  G. Lippmann Epreuves reversibles donnant la sensation du relief , 1908 .

[35]  G. Mather,et al.  Blur Discrimination and its Relation to Blur-Mediated Depth Perception , 2002, Perception.

[36]  F. Okano,et al.  Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television , 2005, Journal of Display Technology.

[37]  Bernard Mendiburu,et al.  3D Movie Making: Stereoscopic Digital Cinema from Script to Screen , 2009 .

[38]  Douglas Lanman,et al.  Build your own 3D display , 2010, SIGGRAPH '10.

[39]  M. Gross,et al.  Nonlinear disparity mapping for stereoscopic 3D , 2010, ACM Trans. Graph..

[40]  Frédo Durand,et al.  Antialiasing for automultiscopic 3D displays , 2006, EGSR '06.

[41]  Pedro Vieira,et al.  Development of an optical simulator of the human eye , 2013, Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications.

[42]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[43]  James F. O'Brien,et al.  Using blur to affect perceived distance and size , 2010, TOGS.

[44]  C. A. Burbeck,et al.  Occlusion edge blur: a cue to relative visual depth. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[46]  D. A. Owens A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings , 1980, Vision Research.

[47]  Douglas Lanman,et al.  Correcting for optical aberrations using multilayer displays , 2012, ACM Trans. Graph..

[48]  M. Banks,et al.  An Analysis of Binocular Slant Contrast , 1999, Perception.

[49]  K H Spring,et al.  VARIATION OF PUPIL SIZE WITH CHANGE IN THE ANGLE AT WHICH THE LIGHT STIMULUS STRIKES THE RETINA* , 1948, The British journal of ophthalmology.

[50]  Alan Sullivan,et al.  DepthCube solid-state 3D volumetric display , 2004, IS&T/SPIE Electronic Imaging.

[51]  Rafael Navarro,et al.  The Optical Design of the Human Eye: a Critical Review , 2009 .

[52]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[53]  Douglas Lanman,et al.  Near-eye light field displays , 2013, SIGGRAPH '13.

[54]  Kevin J. MacKenzie,et al.  Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control. , 2010, Journal of vision.

[55]  Douglas Lanman,et al.  Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization , 2010, ACM Trans. Graph..

[56]  Campbell Fw A method for measuring the depth of field of the human eye. , 1954 .

[57]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[58]  Gordon Wetzstein,et al.  Tensor displays , 2012, ACM Trans. Graph..

[59]  Gregg E. Favalora,et al.  Occlusion-capable multiview volumetric three-dimensional display. , 2007, Applied optics.

[60]  Philip B. Kruger,et al.  Spatiotemporal transfer function of human accommodation , 1994, Vision Research.

[61]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[62]  Gordon Wetzstein,et al.  Eyeglasses-free display , 2014, SIGGRAPH 2014.

[63]  Daniel G. Aliaga,et al.  Tailored displays to compensate for visual aberrations , 2012, ACM Trans. Graph..

[64]  Diego Gutierrez,et al.  A metric of visual comfort for stereoscopic motion , 2013, ACM Trans. Graph..

[65]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.