Dynamic response of multiply connected primary‐secondary systems

The nodal equations of motion of the composite system are given in «total» and «relative» coordinates. In the framework of the component-mode synthesis method a coordinate transformation, here defined as an admissible one, is used to reduce the nodal equations of motion. This coordinate transformation is theoretically and numerically compared with the coordinate transformation usually used in the literature, which generally gives larger errors with respect to the former when a reduced number of nodes is considered

[1]  K. Foss COORDINATES WHICH UNCOUPLE THE EQUATIONS OF MOTION OF DAMPED LINEAR DYNAMIC SYSTEMS , 1956 .

[2]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[3]  A G Davenport,et al.  NOTE ON THE DISTRIBUTION OF THE LARGEST VALUE OF A RANDOM FUNCTION WITH APPLICATION TO GUST LOADING. , 1964 .

[4]  E. Vanmarcke Properties of Spectral Moments with Applications to Random Vibration , 1972 .

[5]  J.-N. Yang,et al.  Nonstationary Envelope Process and First Excursion Probability , 1972 .

[6]  Nathan M. Newmark,et al.  Earthquake response analysis of reactor structures , 1972 .

[7]  E. Vanmarcke On the Distribution of the First-Passage Time for Normal Stationary Random Processes , 1975 .

[8]  James M. Kelly,et al.  Seismic analysis of internal equipment and components in structures , 1979 .

[9]  Analytical evaluation of modal covariance matrices , 1980 .

[10]  A. Kiureghian Structural Response to Stationary Excitation , 1980 .

[11]  Mahendra P. Singh Seismic Design Input for Secondary Systems , 1980 .

[12]  Armen Der Kiureghian,et al.  Dynamic Analysis of Light Equipment in Structures: Modal Properties of the Combined System , 1983 .

[13]  Armen Der Kiureghian,et al.  Dynamic Analysis of Light Equipment in Structures: Response to Stochastic Input , 1983 .

[14]  P. Bezler,et al.  Comparison study of time history and response spectrum responses for multiply supported piping systems. [PWR; BWR] , 1983 .

[15]  Alain Curnier,et al.  On three modal synthesis variants , 1983 .

[16]  A. Kiureghian,et al.  Modal decomposition method for stationary response of non‐classically damped systems , 1984 .

[17]  Ajaya K. Gupta,et al.  Dynamic decoupling of multiply connected MDOF secondary systems , 1984 .

[18]  Ajaya K. Gupta Seismic response of multiply connected MDOF primary and MDOF secondary systems , 1984 .

[19]  Armen Der Kiureghian,et al.  Dynamic Response of Multiply Supported Secondary Systems , 1985 .

[20]  Mario Di Paola,et al.  Response Maxima of a Sdof System Under Seismic Action , 1985 .

[21]  A. Kiureghian,et al.  Dynamic characterization of two-degree-of-freedom equipment-structure systems , 1985 .

[22]  Armen Der Kiureghian,et al.  Generation of floor response spectra including oscillator‐structure interaction , 1985 .

[23]  André Preumont,et al.  On the peak factor of stationary Gaussian processes , 1985 .

[24]  Giuseppe Muscolino,et al.  On the convergent parts of high order spectral moments of stationary structural responses , 1986 .

[25]  Jing-Wen Jaw,et al.  Seismic response of nonclassically damped systems , 1986 .

[26]  Armen Der Kiureghian,et al.  Floor response spectrum method for seismic analysis of multiply supported secondary systems , 1986 .

[27]  Ricardo A. Burdisso,et al.  Seismic analysis of multiply supported secondary systems with dynamic interaction effects , 1987 .

[28]  Ricardo A. Burdisso,et al.  Multiply supported secondary systems part I: Response spectrum analysis , 1987 .

[29]  Luis E. Suarez,et al.  Seismic response analysis of structure–equipment systems with non‐classical damping effects , 1987 .

[30]  Ricardo A. Burdisso,et al.  Multiply supported secondary systems part II: Seismic inputs , 1987 .

[31]  Luis E. Suarez,et al.  Floor response spectra with structure-equipment interaction effects by a mode synthesis approach , 1987 .

[32]  Giuseppe Muscolino,et al.  Analytic evaluation of spectral moments , 1988 .

[33]  Non-stationary spectral moments of base excited MDOF systems , 1988 .

[34]  Giuseppe Muscolino,et al.  Nonstationary Envelope in Random Vibration Theory , 1988 .

[35]  Giuseppe Muscolino,et al.  Non-stationary pre-envelope covariances of non-classically damped systems , 1991 .