Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss

Two-dimensional Vlasov simulations of nonlinear electron plasma waves are presented, in which the interplay of linear and nonlinear kinetic effects is evident. The plasma wave is created with an external traveling wave potential with a transverse envelope of width Δy such that thermal electrons transit the wave in a “sideloss” time, tsl~Δy/ve. Here, ve is the electron thermal velocity. The quasisteady distribution of trapped electrons and its self-consistent plasma wave are studied after the external field is turned off. In cases of particular interest, the bounce frequency, ωbe=keϕ/me, satisfies the trapping condition ωbetsl>2π such that the wave frequency is nonlinearly downshifted by an amount proportional to the number of trapped electrons. Here, k is the wavenumber of the plasma wave and ϕ is its electric potential. For sufficiently short times, the magnitude of the negative frequency shift is a local function of ϕ. Because the trapping frequency shift is negative, the phase of the wave on axis lags ...

[1]  Vol Xiii,et al.  Astronomical Society of the Pacific , 1937, Nature.

[2]  T. M. O'Neil,et al.  The Collisionless Damping of Nonlinear Plasma Oscillations. , 1965 .

[3]  J. Malmberg,et al.  Collisionless Damping of Large-Amplitude Plasma Waves , 1967 .

[4]  J. Dawson,et al.  Trapped-Particle Instability , 1969 .

[5]  J. Denavit,et al.  Nonlinear Oscillations in a Collisionless Plasma , 1970 .

[6]  T. Coffey,et al.  Breaking of Large Amplitude Plasma Oscillations , 1971 .

[7]  Ronald C. Davidson,et al.  Methods in Nonlinear Plasma Theory , 1973 .

[8]  W. Manheimer,et al.  Formation of Stationary Large Amplitude Waves in Plasmas , 1971 .

[9]  A. Lee,et al.  NONLINEAR FREQUENCY SHIFT OF A PLASMA MODE. , 1972 .

[10]  Robert Dewar,et al.  Frequency Shift Due to Trapped Particles , 1972 .

[11]  W. Manheimer,et al.  Modulational Instabilities Due to Trapped Electrons , 1972 .

[12]  R. Dewar,et al.  Nonlinear Frequency Shift of a Plasma Wave , 1972 .

[13]  T. M. O'Neil,et al.  Nonlinear Frequency Shift of an Electron Plasma Wave , 1972 .

[14]  James F. Drake,et al.  Parametric Instabilities of Electromagnetic Waves in Plasmas , 1974 .

[15]  J. Gazdag,et al.  Threshold conditions for electron trapping by nonlinear plasma waves , 1974 .

[16]  P. J. Vidmar,et al.  Nonlinear Wave Number of an Electron Plasma Wave , 1975 .

[17]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[18]  Nonlinear plasma waves excited near resonance , 1977 .

[19]  Réal R. J. Gagné,et al.  Splitting schemes for the numerical solution of a two-dimensional Vlasov equation , 1978 .

[20]  J. Quintenz,et al.  Reply to Comments by M. M. Shoucri and R. R. J. Gagné , 1978 .

[21]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[22]  Albert Simon,et al.  On the inhomogeneous two‐plasmon instability , 1983 .

[23]  M. Goldman,et al.  Strong turbulence of plasma waves , 1984 .

[24]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[25]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[26]  M. Shoucri,et al.  Stability of Bernstein–Greene–Kruskal plasma equilibria. Numerical experiments over a long time , 1988 .

[27]  M. H. Key,et al.  The Physics of Laser Plasma Interactions , 1989 .

[28]  M. R. Feix,et al.  A nonperiodic Euler–Vlasov code for the numerical simulation of laser–plasma beat wave acceleration and Raman scattering , 1990 .

[29]  R. P. Drake,et al.  The influence of subsidiary Langmuir decay on the spectrum of stimulated Raman scattering , 1991 .

[30]  Giovanni Manfredi,et al.  Long-Time Behavior of Nonlinear Landau Damping , 1997 .

[31]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[32]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[33]  A. B. Langdon,et al.  On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams , 1998 .

[34]  D. Russell,et al.  A self-consistent trapping model of driven electron plasma waves and limits on stimulated Raman scatter , 2001 .

[35]  D. S. Montgomery,et al.  Recent Trident single hot spot experiments: Evidence for kinetic effects, and observation of Langmuir decay instability cascade , 2002 .

[36]  N. Fisch,et al.  Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma , 2003 .

[37]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[38]  H. Rose Langmuir wave self-focusing versus decay instability , 2004, physics/0405015.

[39]  E. Valeo,et al.  Trapped-particle instability leading to bursting in stimulated Raman scattering simulations. , 2004, Physical review letters.

[40]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[41]  Niels Bohr,et al.  INERTIAL CONFINEMENT FUSION , 2006 .

[42]  K. Bowers,et al.  Saturation of backward stimulated scattering of a laser beam in the kinetic regime. , 2007, Physical review letters.

[43]  L. Gremillet,et al.  Nonlinear plasma response to a slowly varying electrostatic wave, and application to stimulated Raman scattering , 2007 .

[44]  A. B. Langdon,et al.  Analyses of laser-plasma interactions in National Ignition Facility ignition targetsa) , 2007 .

[45]  W. Mori,et al.  The relative importance of fluid and kinetic frequency shifts of an electron plasma wave , 2007 .

[46]  David Strozzi,et al.  Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled Hohlraums , 2008 .

[47]  D. Strozzi,et al.  Breakdown of electrostatic predictions for the nonlinear dispersion relation of a stimulated Raman scattering driven plasma wave , 2008 .

[48]  Langmuir wave filamentation instability , 2007, 0710.3563.

[49]  Richard L. Berger,et al.  Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facilitya) , 2009 .

[50]  A. Maximov,et al.  Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments , 2009 .

[51]  L. Divol,et al.  Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas. , 2009, Physical review letters.

[52]  L. Divol,et al.  Kinetic dispersion of Langmuir waves. I. The Langmuir decay instability , 2009 .

[53]  P. Michel,et al.  National Ignition Campaign Hohlraum energeticsa) , 2009 .

[54]  P. Masson-Laborde,et al.  Evolution of the stimulated Raman scattering instability in two-dimensional particle-in-cell simulations , 2010 .

[55]  S. Laffite,et al.  Design of an ignition target for the laser megajoule, mitigating parametric instabilities , 2010 .

[56]  D. Strozzi,et al.  Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations , 2010 .

[57]  J W Banks,et al.  A New Class of Nonlinear Finite-Volume Methods for Vlasov Simulation , 2009, IEEE Transactions on Plasma Science.

[58]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[59]  L. Divol,et al.  Electron and Ion Kinetic Effects on Nonlinearly Driven Electron Plasma and Ion Acoustic Waves , 2011 .

[60]  Phillip Colella,et al.  High-order, finite-volume methods in mapped coordinates , 2010, J. Comput. Phys..