Modal analysis of active flexible multibody systems containing PID controllers with non-collocated sensors and actuators

Abstract A method for performing modal analysis of undamped active flexible multibody systems with collocated sensors and actuators in a finite element environment was recently developed by the authors. In this paper, the theory is further expanded to include systems with non-collocated sensors and actuators, damping and steady-state error elimination. The closed-loop eigenvalue problem for active flexible multibody systems with multiple-input multiple-output proportional-integral-derivative (PID) feedback type controllers and multiple degrees of freedom finite element models is solved.

[1]  S. Adhikari Rates of change of eigenvalues and eigenvectors in damped dynamic system , 1999 .

[2]  Terje Rølvåg,et al.  Modal Analysis of Lumped Flexible Active Systems (Part 1) , 2008 .

[3]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[4]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[5]  Magne Bratland Modal Analysis of Active Flexible Multibody Systems in a Finite Element Environment , 2011 .

[6]  M. F. Golnaraghi,et al.  Active Structural Vibration Control: A Review , 2003 .

[7]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Werner Bernzen,et al.  Active Vibration Control of Flexible Robots Using Virtual Spring-damper Systems , 1999, J. Intell. Robotic Syst..

[10]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[11]  Mehdi Ahmadian,et al.  Orthogonal Eigenstructure Control with Non-collocated Actuators and Sensors , 2009 .

[12]  K. Bathe Finite Element Procedures , 1995 .

[13]  Bjørn Olav Haugen,et al.  Modal analysis of active flexible multibody systems , 2011 .

[14]  W. Thomson Theory of vibration with applications , 1965 .

[15]  J. G. F. Francis,et al.  The QR Transformation - Part 2 , 1962, Comput. J..

[16]  K. Park,et al.  Second-order structural identification procedure via state-space-based system identification , 1994 .

[17]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[18]  Blake Hannaford,et al.  Stability guaranteed control: time domain passivity approach , 2004, IEEE Trans. Control. Syst. Technol..

[19]  W. Burnside,et al.  The Theory of Equations: with an Introduction to the Theory of Binary Algebraic Forms , 2005, Nature.

[20]  K. Foss COORDINATES WHICH UNCOUPLE THE EQUATIONS OF MOTION OF DAMPED LINEAR DYNAMIC SYSTEMS , 1956 .

[21]  J. G. F. Francis,et al.  The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..

[22]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[23]  K. Åström,et al.  Revisiting the Ziegler-Nichols step response method for PID control , 2004 .

[24]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[25]  Tore Hägglund,et al.  The future of PID control , 2000 .

[26]  Neville Hogan,et al.  Controller design in the physical domain , 1991 .

[27]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[28]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .