Thermal deconvolution: Accurate retrieval of multispectral infrared emissivity from thermally-mixed volcanic surfaces

Abstract The thermal infrared (TIR) wavelength region has proved highly useful for remotely extracting important parameters of volcanic activity, such as the composition, texture, and temperature of either the surface or gas/aerosol emissions. However, each of these characteristics can vary within the area of one pixel of a remote sensing dataset, which ultimately affects the accuracy of the retrieval of these characteristics. For example, where multiple temperatures occur in a particular pixel, the derived emissivity spectrum and pixel-integrated brightness temperature for that pixel are inaccurate. We present a new approach for deconvolving thermally-mixed pixels in a day/night pair of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR) scenes over Kilauea volcano, acquired during an active effusive phase in October 2006. The thermal deconvolution algorithm identifies thermally-mixed pixels and determines the multiple temperature components and their area, using data from the higher spatial resolution short wave infrared (SWIR) channels of ASTER. The effects of thermal mixing on the emissivity retrievals were quantified using a spectral deconvolution approach comparing the original to the thermally deconvolved data. The root mean squared (RMS) error improved slightly from 0.879 to 0.813, whereas the compositional end-members changed more dramatically (e.g., glass decreased from 70.2% to 49.3% and the vesicularity increased from 0.7% to 16.3%). The results provide more accurate temperature and emissivity data derived from ASTER data over thermally-elevated surfaces such as volcanoes and fires. This approach also serves as rapid means for accurately identifying sub-pixel temperatures, commonly obscured in low to medium spatial resolution orbital datasets. Moreover, it minimizes processing time, allowing critical information to be quickly disseminated.

[1]  J. Dozier A method for satellite identification of surface temperature fields of subpixel resolution , 1981 .

[2]  Paul E. Johnson,et al.  Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra , 1992 .

[3]  L. Glaze,et al.  Measuring thermal budgets of active volcanoes by satellite remote sensing , 1989, Nature.

[4]  M. Abrams,et al.  ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia , 2005 .

[5]  M. Ramsey,et al.  Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring , 1999 .

[6]  D. Rothery,et al.  Infrared monitoring of volcanoes by satellite , 1991, Journal of the Geological Society.

[7]  M. Wooster,et al.  Testing the accuracy of solar-reflected radiation corrections applied during satellite shortwave infrared thermal analysis of active volcanoes , 2001 .

[8]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[9]  David C. Pieri,et al.  Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna , 1990 .

[10]  L. Keszthelyi,et al.  Calculation of lava effusion rates from Landsat TM data , 1998 .

[11]  J. Thomson,et al.  The mid-infrared reflectance of mineral mixtures (7-14 microns) , 1993 .

[12]  Clive Oppenheimer,et al.  Infrared image analysis of volcanic thermal features: Láscar Volcano, Chile, 1984–1992 , 1993 .

[13]  Michael S. Ramsey,et al.  Super-resolution of THEMIS thermal infrared data: Compositional relationships of surface units below the 100 meter scale on Mars , 2010 .

[14]  Yingxin Gu,et al.  Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer , 2004 .

[15]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[16]  Yasushi Yamaguchi,et al.  Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 2003, SPIE Remote Sensing.

[17]  Simon A. Carn,et al.  A satellite chronology of the May–June 2003 eruption of Anatahan volcano , 2005 .

[18]  Akira Iwasaki,et al.  Validation of a crosstalk correction algorithm for ASTER/SWIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[19]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[20]  Michael S. Ramsey,et al.  Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR , 2004 .

[21]  C. Prabhakara,et al.  Remote sensing of the surface emissivity at 9 μm over the globe , 1976 .

[22]  Jonathan Dehn,et al.  Thermal monitoring of North Pacific volcanoes from space , 2000 .

[23]  Michael S. Ramsey,et al.  ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia , 2008 .

[24]  D. A. Howard,et al.  Identification of sand sources and transport pathways at the Kelso Dunes, California, using thermal infrared remote sensing , 1999 .

[25]  R. Greg Vaughan,et al.  High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption at Redoubt Volcano, Alaska , 2013 .

[26]  P. Christensen,et al.  Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks , 1999 .

[27]  Clive Oppenheimer,et al.  Infrared surveillance of crater lakes using satellite data , 1993 .

[28]  Akira Iwasaki,et al.  ASTER geometric performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[29]  David A. Crown,et al.  Surface unit characterization of the Mauna Ulu flow field, Kilauea Volcano, Hawai'i, using integrated field and remote sensing analyses , 2004 .

[30]  Vincent J. Realmuto,et al.  The advanced spaceborne thermal emission and reflectance radiometer (Aster) , 1991, Int. J. Imaging Syst. Technol..

[31]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[32]  Stephen P. Scheidt,et al.  Eolian dynamics and sediment mixing in the Gran Desierto, Mexico, determined from thermal infrared spectroscopy and remote-sensing data , 2011 .

[33]  Michael James,et al.  Surface temperature measurements of active lava flows on Kilauea volcano, Hawai′i , 2002 .

[34]  H. McSween,et al.  Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy , 1997 .

[35]  Michael S. Ramsey,et al.  The 2005 eruption of Kliuchevskoi volcano: Chronology and processes derived from ASTER spaceborne and field-based data , 2009 .

[36]  A. Gillespie Spectral mixture analysis of multispectral thermal infrared images , 1992 .

[37]  M. Ramsey,et al.  Micron-scale roughness of volcanic surfaces from thermal infrared spectroscopy and scanning electron microscopy , 2009 .

[38]  Clive Oppenheimer,et al.  Lava flow cooling estimated from Landsat Thematic Mapper infrared data: The Lonquimay Eruption (Chile, 1989) , 1991 .

[39]  R. Singer,et al.  Mars - Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance , 1979 .

[40]  Minoru Urai,et al.  Discolored seawater detection using ASTER reflectance products: A case study of Satsuma-Iwojima, Japan , 2005 .

[41]  H. Y. McSween,et al.  Addendum: Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[42]  J. Dozier,et al.  Identification of Subresolution High Temperature Sources Using a Thermal IR Sensor , 1981 .

[43]  R. J. P. Lyon,et al.  Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils. part ii- rough and powdered surfaces , 1963 .

[44]  Michael Abrams,et al.  Monitoring Colima Volcano, Mexico, using satellite data , 1991 .

[45]  Maria Fabrizia Buongiorno,et al.  Mt. Etna sulfur dioxide flux monitoring using ASTER-TIR data and atmospheric observations , 2006 .

[46]  A. Harris,et al.  MODVOLC: near-real-time thermal monitoring of global volcanism , 2004 .

[47]  John B. Adams,et al.  Quantitative subpixel spectral detection of targets in multispectral images. [terrestrial and planetary surfaces] , 1992 .

[48]  Hideyuki Tonooka,et al.  Validation of ASTER/TIR standard atmospheric correction using water surfaces , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Vincent J. Realmuto,et al.  Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii , 1992 .

[50]  A. Gillespie,et al.  Lithologic mapping of silicate rocks using TIMS , 1986 .

[51]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[52]  Keith A. Horton,et al.  Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991 , 1994 .

[53]  Joshua L. Bandfield,et al.  Effects of surface roughness and graybody emissivity on martian thermal infrared spectra , 2009 .

[54]  D. Rothery,et al.  Volcano monitoring using short wavelength infrared data from satellites , 1988 .

[55]  Peter W. Webley,et al.  Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles , 2011 .

[56]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[57]  Z. Wan,et al.  Evaluation of Six Methods for Extracting Relative Emissivity Spectra from Thermal Infrared Images , 1999 .

[58]  David J. Schneider,et al.  Exploring the limits of identifying sub-pixel thermal features using ASTER TIR data , 2010 .

[59]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[60]  Kohei Arai,et al.  Radiometric performance evaluation of ASTER VNIR, SWIR, and TIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Martin J. Wooster,et al.  Thermal monitoring of Lascar Volcano, Chile, using infrared data from the along-track scanning radiometer: a 1992–1995 time series , 1997 .