Solitons for the cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients

In this paper, we construct, by means of similarity transformations, explicit solutions to the cubic–quintic nonlinear Schrodinger equation with potentials and nonlinearities depending on both time and spatial coordinates. We present the general approach and use it to calculate bright and dark soliton solutions for nonlinearities and potentials of physical interest in applications to Bose–Einstein condensates and nonlinear optics.

[1]  Juan Belmonte-Beitia,et al.  Localized nonlinear waves in systems with time- and space-modulated nonlinearities. , 2008, Physical review letters.

[2]  Víctor M. Pérez-García,et al.  Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients , 2005, nlin/0512061.

[3]  R Grimm,et al.  Observation of Feshbach-like resonances in collisions between ultracold molecules. , 2005, Physical review letters.

[4]  T. Frederico,et al.  Stability of trapped Bose-Einstein condensates , 2001 .

[5]  Cornish,et al.  Stable 85Rb bose-einstein condensates with widely tunable interactions , 2000, Physical review letters.

[6]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[7]  P. Kevrekidis,et al.  Nonlinearity management in higher dimensions , 2005, cond-mat/0505498.

[8]  D. Psaltis,et al.  Nonlinearity management in optics: experiment, theory, and simulation. , 2006, Physical review letters.

[9]  Daoben Zhu,et al.  Third- and fifth-order optical nonlinearities in a new stilbazolium derivative , 2002 .

[10]  Boris A. Malomed,et al.  Soliton Management in Periodic Systems , 2006 .

[11]  Hasegawa,et al.  Novel soliton solutions of the nonlinear Schrodinger equation model , 2000, Physical review letters.

[12]  J. Belmonte-Beitia Symmetric and asymmetric bound states for the nonlinear Schrödinger equation with inhomogeneous nonlinearity , 2009 .

[13]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[14]  Juan Belmonte-Beitia,et al.  Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. , 2006, Physical review letters.

[15]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[16]  Johann Troles,et al.  Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses , 2003 .

[17]  Víctor M. Pérez-García,et al.  Lie Symmetries, qualitative analysis and exact solutions of nonlinear Schr\ , 2007, 0801.1437.

[18]  Averaging for solitons with nonlinearity management. , 2003, Physical review letters.

[19]  M. Hellwig,et al.  Tuning the scattering length with an optically induced Feshbach resonance. , 2004, Physical review letters.

[20]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[21]  I. V. Barashenkov,et al.  Soliton-like “bubbles” in a system of interacting bosons , 1988 .

[22]  A. Davydov,et al.  Solitons in molecular systems , 1979 .