Automatic topics segmentation for news video by clustering of histogram of orientation gradients faces

TV stream is a major source of multimedia data. The proposed method aims to enable a good exploitation of this source of video by multimedia services social community, and video-sharing platforms In this work, we propose an approach to the automatic topics segmentation of news video. The originality of the approach is the use of Clustering of Histogram of Orientation Gradients (HOG) faces as prior knowledge. This knowledge is modeled as images which governs the structuring of TV stream content. This structuring is carried out on two levels. The first consists in the identification of anchorperson by Single-Linkage Clustering of HOG faces. The second level aims to identify the topics of news program due to the large audience because of the pertinent information they contain. Experiments comparing the proposed technique to similar works were carried out on the TREC Video Retrieval Evaluation (TRECVID) 2003 database. The results show significant improvements to TV news structuring exceeding 96 %.