Synthesis of multi-layered perovskite oxyiodides: Impact of number of perovskite layers and type of halide layer for band levels and photocatalytic properties

[1]  Yue Zhao,et al.  Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. , 2022, Chemical Society reviews.

[2]  T. Tachikawa,et al.  Manipulation of charge carrier flow in Bi4NbO8Cl nanoplate photocatalyst with metal loading , 2022, Chemical science.

[3]  H. Kageyama,et al.  Layered Perovskite Oxyiodide with Narrow Band Gap and Long Lifetime Carriers for Water Splitting Photocatalysis. , 2021, Journal of the American Chemical Society.

[4]  H. Kageyama,et al.  Synthesis, band structure and photocatalytic properties of Sillén–Aurivillius oxychlorides BaBi5Ti3O14Cl, Ba2Bi5Ti4O17Cl and Ba3Bi5Ti5O20Cl with triple-, quadruple- and quintuple-perovskite layers , 2021, Journal of Materials Chemistry A.

[5]  K. Domen,et al.  Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. , 2020, Chemical reviews.

[6]  Takafumi D. Yamamoto,et al.  Band Engineering of Double-Layered Sillén–Aurivillius Perovskite Oxychlorides for Visible-Light-Driven Water Splitting , 2019, Chemistry of Materials.

[7]  H. Yan,et al.  Crystal structure and electrical properties of textured Ba2Bi4Ti5O18 ceramics , 2019, Journal of the European Ceramic Society.

[8]  K. Domen,et al.  Particulate Photocatalysts for Water Splitting: Recent Advances and Future Prospects , 2019, ACS Energy Letters.

[9]  H. Kageyama,et al.  Flux Synthesis of Layered Oxyhalide Bi4NbO8Cl Photocatalyst for Efficient Z-Scheme Water Splitting Under Visible Light. , 2018, ACS applied materials & interfaces.

[10]  H. Kageyama,et al.  Improved water oxidation under visible light on oxyhalide Bi4MO8X (M = Nb, Ta; X = Cl, Br) photocatalysts prepared using excess halogen precursors , 2018 .

[11]  H. Kageyama,et al.  Two-step synthesis of Sillén–Aurivillius type oxychlorides to enhance their photocatalytic activity for visible-light-induced water splitting , 2018 .

[12]  J. Attfield,et al.  Expanding frontiers in materials chemistry and physics with multiple anions , 2018, Nature Communications.

[13]  H. Kageyama,et al.  Strong hybridization between Bi-6s and O-2p orbitals in Sillén–Aurivillius perovskite Bi4MO8X (M = Nb, Ta; X = Cl, Br), visible light photocatalysts enabling stable water oxidation , 2018 .

[14]  K. Hongo,et al.  Valence Band Engineering of Layered Bismuth Oxyhalides toward Stable Visible-Light Water Splitting: Madelung Site Potential Analysis. , 2017, Journal of the American Chemical Society.

[15]  H. Kageyama,et al.  Sillén–Aurivillius-related Oxychloride Bi6NbWO14Cl as a Stable O2-evolving Photocatalyst in Z-scheme Water Splitting under Visible Light , 2017 .

[16]  H. Kageyama,et al.  Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting. , 2016, Journal of the American Chemical Society.

[17]  A. Abakumov,et al.  Synthesis and cation distribution in the new bismuth oxyhalides with the Sillén-Aurivillius intergrowth structures. , 2015, Dalton transactions.

[18]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[19]  Robert Kostecki,et al.  Nanomaterials for renewable energy production and storage. , 2012, Chemical Society reviews.

[20]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[21]  Ryu Abe,et al.  Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation , 2010 .

[22]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[23]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[24]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[25]  A. Gómez-Herrero,et al.  Synthesis, structural and microstructural study of Bi4W0.5Ti0.5O8X (X=Cl, Br) Sillén–Aurivillius intergrowths , 2005 .

[26]  P. Lightfoot,et al.  Structure–property correlations in the new ferroelectric Bi5PbTi3O14Cl and related layered oxyhalide intergrowth phases , 2002 .

[27]  J. Ackerman The structures of Bi3PbWO8Cl and Bi4NbO8Cl and the evolution of the bipox structure series , 1986 .

[28]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[29]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[30]  R. D. Shannon,et al.  Synthesis and characterization of a new series of BiOI1−x−yBrxCly pigments , 1985 .