Allosteric effects of R- and S-citalopram on the human 5-HT transporter: evidence for distinct high- and low-affinity binding sites.

[1]  A. Schousboe,et al.  Neurotransmitter transporters: molecular function of important drug targets. , 2006, Trends in pharmacological sciences.

[2]  C. G. Hansen,et al.  Dissection of an Allosteric Mechanism on the Serotonin Transporter: A Cross-Species Study , 2006, Molecular Pharmacology.

[3]  R. Blakely,et al.  Tyr-95 and Ile-172 in Transmembrane Segments 1 and 3 of Human Serotonin Transporters Interact to Establish High Affinity Recognition of Antidepressants* , 2006, Journal of Biological Chemistry.

[4]  O. Wiborg,et al.  High- and low-affinity binding of S-citalopram to the human serotonin transporter mutated at 20 putatively important amino acid positions , 2005, Neuroscience Letters.

[5]  G. Chouvet,et al.  Effects of Acute and Long-Term Administration of Escitalopram and Citalopram on Serotonin Neurotransmission: an In Vivo Electrophysiological Study in Rat Brain , 2005, Neuropsychopharmacology.

[6]  N. Moore,et al.  Prospective, multicentre, randomized, double-blind study of the efficacy of escitalopram versus citalopram in outpatient treatment of major depressive disorder , 2005, International clinical psychopharmacology.

[7]  S. Rasmussen,et al.  Purification and fluorescent labeling of the human serotonin transporter. , 2005, Biochemistry.

[8]  Fenghua Chen,et al.  Characterization of an allosteric citalopram‐binding site at the serotonin transporter , 2005, Journal of neurochemistry.

[9]  B. Elfving,et al.  The Chicken Serotonin Transporter Discriminates between Serotonin-selective Reuptake Inhibitors , 2004, Journal of Biological Chemistry.

[10]  C. Sánchez,et al.  R‐citalopram functionally antagonises escitalopram in vivo and in vitro: evidence for kinetic interaction at the serotonin transporter , 2004, British journal of pharmacology.

[11]  K. Miczek,et al.  Anxiolytic-Like Effects of Escitalopram, Citalopram, and R-Citalopram in Maternally Separated Mouse Pups , 2004, Journal of Pharmacology and Experimental Therapeutics.

[12]  M. Reith,et al.  Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6 , 2004, Pflügers Archiv.

[13]  Ove Wiborg,et al.  The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors , 2003, European Neuropsychopharmacology.

[14]  C. Sánchez,et al.  The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats , 2003, Neuropharmacology.

[15]  M. Hamon,et al.  De nouvelles données pour appréhender les mécanismes d'action des antidépresseurs: l'apport du Escitalopram. , 2003 .

[16]  C. Sánchez R-citalopram attenuates anxiolytic effects of escitalopram in a rat ultrasonic vocalisation model. , 2003, European journal of pharmacology.

[17]  O. V. Mortensen,et al.  Species‐scanning mutagenesis of the serotonin transporter reveals residues essential in selective, high‐affinity recognition of antidepressants , 2001, Journal of neurochemistry.

[18]  R. Blakely,et al.  High Affinity Recognition of Serotonin Transporter Antagonists Defined by Species-scanning Mutagenesis , 1998, The Journal of Biological Chemistry.

[19]  P. Plenge,et al.  An affinity-modulating site on neuronal monoamine transport proteins. , 1997, Pharmacology & toxicology.

[20]  E. Zifa,et al.  A new peptide, 5-HT-moduline, isolated and purified from mammalian brain specifically interacts with 5-HT 1B 1D receptors , 1995, Behavioural Brain Research.

[21]  P. Plenge,et al.  Differences in brain 5-HT transporter dissociation rates among animal species. , 1995, Pharmacology & toxicology.

[22]  T. Schwartz,et al.  Stable expression of high affinity NK1 (substance P) and NK2(neurokinin A) receptors but low affinity NK3 (neurokinin B) receptors in transfected CHO cells , 1992, FEBS letters.

[23]  P. Plenge,et al.  Affinity modulation of [3H]imipramine, [3H]paroxetine and [3H]citalopram binding to the 5-HT transporter from brain and platelets. , 1991, European journal of pharmacology.

[24]  P. Plenge,et al.  Inhibitory and regulatory binding sites on the rat brain serotonin transporter: molecular weight of the [3H]paroxetine and [3H]citalopram binding proteins. , 1990, European journal of pharmacology.

[25]  T. Schwartz,et al.  Biosynthesis of peptide precursors and protease inhibitors using new constitutive and inducible eukaryotic expression vectors , 1990, FEBS letters.

[26]  P. Plenge,et al.  The activity of 25 paroxetine/femoxetine structure variants in various reactions, assumed to be important for the effect of antidepressants , 1987, The Journal of pharmacy and pharmacology.

[27]  P. Plenge,et al.  Antidepressive drugs can change the affinity of [3H]imipramine and [3H]paroxetine binding to platelet and neuronal membranes. , 1985, European journal of pharmacology.

[28]  L. Wennogle,et al.  Serotonin modulates the dissociation of [3H]imipramine from human platelet recognition sites. , 1982, European journal of pharmacology.

[29]  R. Gainetdinov,et al.  Plasma membrane monoamine transporters: structure, regulation and function , 2003, Nature Reviews Neuroscience.