A Review of Fingerprint Feature Representations and Their Applications for Latent Fingerprint Identification: Trends and Evaluation

Latent fingerprint identification is attracting increasing interest because of its important role in law enforcement. Although the use of various fingerprint features might be required for successful latent fingerprint identification, methods based on minutiae are often readily applicable and commonly outperform other methods. However, as many fingerprint feature representations exist, we sought to determine if the selection of feature representation has an impact on the performance of automated fingerprint identification systems. In this paper, we review the most prominent fingerprint feature representations reported in the literature, identify trends in fingerprint feature representation, and observe that representations designed for verification are commonly used in latent fingerprint identification. We aim to evaluate the performance of the most popular fingerprint feature representations over a common latent fingerprint database. Therefore, we introduce and apply a protocol that evaluates minutia descriptors for latent fingerprint identification in terms of the identification rate plotted in the cumulative match characteristic (CMC) curve. From our experiments, we found that all the evaluated minutia descriptors obtained identification rates lower than 10% for Rank−1 and 24% for Rank−100 comparing the minutiae in the database NIST SD27, illustrating the need of new minutia descriptors for latent fingerprint identification.

[1]  Arun Ross,et al.  A hybrid fingerprint matcher , 2002, Object recognition supported by user interaction for service robots.

[2]  William J. Hankley,et al.  Automatic fingerprint interpretation and classification via contextual analysis and topological coding , 1968 .

[3]  En Zhu,et al.  Fingerprint matching based on global alignment of multiple reference minutiae , 2005, Pattern Recognit..

[4]  Raymond N. J. Veldhuis,et al.  Fingerprint Verification Using Spectral Minutiae Representations , 2009, IEEE Transactions on Information Forensics and Security.

[5]  Richa Singh,et al.  Hierarchical fusion for matching simultaneous latent fingerprint , 2012, 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[6]  Anil K. Jain,et al.  Automated Latent Fingerprint Recognition , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Jonathan D. Stosz,et al.  Automated system for fingerprint authentication using pores and ridge structure , 1994, Optics & Photonics.

[8]  Jie Tian,et al.  A minutiae matching algorithm in fingerprint verification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[9]  Anil K. Jain,et al.  Latent fingerprint indexing: Fusion of level 1 and level 2 features , 2013, 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[10]  Peter D. Komarinski,et al.  Automated Fingerprint Identification Systems , 2006 .

[11]  Mohammed Oumsis,et al.  Improvement of fingerprint matching by describing the minutiae neighborhood using a set of Quaternion Disc-Harmonic Moments , 2014, 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA).

[12]  Albert Niel,et al.  A Fingerprint Matching Using Minutiae Triangulation , 2004, ICBA.

[13]  Nalini K. Ratha,et al.  Robust fingerprint authentication using local structural similarity , 2000, Proceedings Fifth IEEE Workshop on Applications of Computer Vision.

[14]  Francisco Herrera,et al.  A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation , 2015, Inf. Sci..

[15]  Sharath Pankanti,et al.  FingerCode: a filterbank for fingerprint representation and matching , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[16]  Anil K. Jain,et al.  Latent Fingerprint Matching: Fusion of Rolled and Plain Fingerprints , 2009, ICB.

[17]  Bir Bhanu,et al.  Fingerprint matching by genetic algorithms , 2006, Pattern Recognit..

[18]  Manhua Liu,et al.  Sparse coding based orientation estimation for latent fingerprints , 2017, Pattern Recognit..

[19]  Anil K. Jain,et al.  Latent Fingerprint Recognition: Role of Texture Template , 2018, 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS).

[20]  P. Jonathon Phillips,et al.  Face Recognition Vendor Test 2002 Performance Metrics , 2003, AVBPA.

[21]  Anni Cai,et al.  Fingerprint Representation and Matching in Ridge Coordinate System , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[22]  Jie Zhou,et al.  A Performance Evaluation of Fingerprint Minutia Descriptors , 2011, 2011 International Conference on Hand-Based Biometrics.

[23]  Jian Li,et al.  Deep convolutional neural network for latent fingerprint enhancement , 2018, Signal Process. Image Commun..

[24]  Thumrongrat Amornraksa,et al.  Fingerprint recognition using DCT features , 2006 .

[25]  Ravi Garg,et al.  A keypoint descriptor for alignment-free fingerprint matching , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  Davide Maltoni,et al.  Fingerprint Indexing Based on Minutia Cylinder-Code , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  F. Sirovich Un algoritmo per la classificazione di impronte digitali , 1968 .

[28]  Yuhang Liu,et al.  FingerNet: An unified deep network for fingerprint minutiae extraction , 2017, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[29]  Davide Maltoni,et al.  Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerprint Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  J. Bohne,et al.  Fingerprint skeleton matching based on local descriptor , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[31]  Venu Govindaraju,et al.  A minutia-based partial fingerprint recognition system , 2005, Pattern Recognit..

[32]  Venu Govindaraju,et al.  K-plet and Coupled BFS: A Graph Based Fingerprint Representation and Matching Algorithm , 2006, ICB.

[33]  Peng Li,et al.  A Novel Fingerprint Matching Algorithm Using Ridge Curvature Feature , 2009, ICB.

[34]  James A. McHugh,et al.  Automated fingerprint recognition using structural matching , 1990, Pattern Recognit..

[35]  Abdul Wahab,et al.  Novel approach to automated fingerprint recognition , 1998 .

[36]  Leopoldo Altamirano-Robles,et al.  Robust Fingerprint Verification Using M-Triplets , 2011, 2011 International Conference on Hand-Based Biometrics.

[37]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[38]  Peng Li,et al.  Fingerprint Matching Based on Neighboring Information and Penalized Logistic Regression , 2009, ICB.

[39]  Anil K. Jain,et al.  Latent Fingerprint Matching Using Descriptor-Based Hough Transform , 2011, IEEE Transactions on Information Forensics and Security.

[40]  Qingyun Shi,et al.  A new automated fingerprint identification system , 2008, Journal of Computer Science and Technology.

[41]  Anil K. Jain,et al.  FVC2002: Second Fingerprint Verification Competition , 2002, Object recognition supported by user interaction for service robots.

[42]  Xianglong Tang,et al.  Local relative location error descriptor-based fingerprint minutiae matching , 2008, Pattern Recognit. Lett..

[43]  Venu Govindaraju,et al.  Robust Fingerprint Matching Using Spiral Partitioning Scheme , 2009, ICB.

[44]  Michael S. Hsiao,et al.  Minutiae + friction ridges = triplet-based features for determining sufficiency in fingerprints , 2011, ICDP.

[45]  Daming Shi,et al.  Fingerprint minutiae matching using the adjacent feature vector , 2005, Pattern Recognit. Lett..

[46]  Dongjae Lee,et al.  A robust fingerprint matching algorithm using local alignment , 2002, Object recognition supported by user interaction for service robots.

[47]  Safwat G. Zaky,et al.  Fingerprint identification using graph matching , 1986, Pattern Recognit..

[48]  I. Dror,et al.  The vision in “blind” justice: Expert perception, judgment, and visual cognition in forensic pattern recognition , 2010, Psychonomic bulletin & review.

[49]  Anil K. Jain,et al.  Latent orientation field estimation via convolutional neural network , 2015, 2015 International Conference on Biometrics (ICB).

[50]  Eryun Liu,et al.  Random local region descriptor (RLRD): A new method for fixed-length feature representation of fingerprint image and its application to template protection , 2012, Future Gener. Comput. Syst..

[51]  Jie Zhou,et al.  Fingerprint recognition using model-based density map , 2006, IEEE Transactions on Image Processing.

[52]  Chunyu Yang,et al.  Latent fingerprint match using Minutia Spherical Coordinate Code , 2015, 2015 International Conference on Biometrics (ICB).

[53]  Anil K. Jain,et al.  Latent Fingerprint Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Francisco Herrera,et al.  DPD-DFF: A dual phase distributed scheme with double fingerprint fusion for fast and accurate identification in large databases , 2016, Inf. Fusion.

[55]  S. H. Gerez,et al.  A correlation-based fingerprint verification system , 2000 .

[56]  Zsolt Miklós Kovács-Vajna,et al.  A Fingerprint Verification System Based on Triangular Matching and Dynamic Time Warping , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Anoop M. Namboodiri,et al.  Learning Minutiae Neighborhoods: A New Binary Representation for Matching Fingerprints , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[58]  Leopoldo Altamirano Robles,et al.  Improving Fingerprint Verification Using Minutiae Triplets , 2012, Sensors.

[59]  Sharath Pankanti,et al.  An identity-authentication system using fingerprints , 1997, Proc. IEEE.

[60]  A. Grasselli ON THE AUTOMATIC CLASSIFICATION OF FINGERPRINTS – SOME CONSIDERATIONS ON THE LINGUISTIC INTERPRETATION OF PICTURES , 1969 .

[61]  Xudong Jiang,et al.  Fingerprint minutiae matching based on the local and global structures , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[62]  C. H. Kuo,et al.  A topology-based matching algorithm for fingerprint authentication , 1991, Proceedings. 25th Annual 1991 IEEE International Carnahan Conference on Security Technology.

[63]  Alvin F. Martin,et al.  The DET curve in assessment of detection task performance , 1997, EUROSPEECH.

[64]  R. A. Hicklin,et al.  ELFT-EFS Evaluation of Latent Fingerprint Technologies: Extended Feature Sets [Evaluation #2] , 2011 .

[65]  Anil K. Jain,et al.  On matching latent fingerprints , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[66]  Yangsheng Wang,et al.  Fingerprint matching combining the global orientation field with minutia , 2005, Pattern Recognit. Lett..

[67]  Miguel Angel Ferrer-Ballester,et al.  Latent fingerprint identification using deformable minutiae clustering , 2016, Neurocomputing.

[68]  Sanaa Ghouzali,et al.  Fingerprint shell: Secure representation of fingerprint template , 2014, Pattern Recognit. Lett..

[69]  Michael D. Garris,et al.  NIST Special Database 27 Fingerprint Minutiae From Latent and Matching Tenprint Images , 2000 .

[70]  Yenumula B. Reddy Latent fingerprint matching in large databases using high performance computing , 2016, 2016 International Conference on Computing, Networking and Communications (ICNC).

[71]  Craig I. Watson,et al.  Combined optical and neural network fingerprint matching , 1999, Defense, Security, and Sensing.

[72]  Benjamin Rosman,et al.  Fingerprint minutiae extraction using deep learning , 2017, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[73]  Davide Maltoni,et al.  Large-scale fingerprint identification on GPU , 2015, Inf. Sci..

[74]  Weiwei Zhang,et al.  Core-based structure matching algorithm of fingerprint verification , 2002, Object recognition supported by user interaction for service robots.

[75]  Carsten Gottschlich,et al.  Perfect fingerprint orientation fields by locally adaptive global models , 2016, IET Biom..

[76]  Pauli Kuosmanen,et al.  Fingerprint Matching Using an Orientation-Based Minutia Descriptor , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Pauli Kuosmanen,et al.  Fingerprint recognition using wavelet features , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[78]  Ching-Hsien Hsu,et al.  Score level based latent fingerprint enhancement and matching using SIFT feature , 2018, Multimedia Tools and Applications.

[79]  Pauli Kuosmanen,et al.  Wavelet domain features for fingerprint recognition , 2001 .

[80]  Jianjiang Feng,et al.  Combining minutiae descriptors for fingerprint matching , 2008, Pattern Recognit..

[81]  Qijun Zhao,et al.  On the utility of extended fingerprint features: A study on pores , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[82]  Richa Singh,et al.  On matching latent to latent fingerprints , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[83]  Anni Cai,et al.  Fingerprint matching using ridges , 2006, Pattern Recognit..

[84]  Jiankun Hu,et al.  Latent fingerprint segmentation based on convolutional neural networks , 2017, 2017 IEEE Workshop on Information Forensics and Security (WIFS).

[85]  Julien Bringer,et al.  Binary feature vector fingerprint representation from minutiae vicinities , 2010, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[86]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[87]  Yi Chen,et al.  Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features , 2007 .

[88]  Richa Singh,et al.  Latent Fingerprint Matching: A Survey , 2014, IEEE Access.

[89]  Anush Sankaran,et al.  Learning representations for matching fingerprint variants , 2017 .

[90]  L. Weathered The innocence project , 2003 .

[91]  José Hernández Palancar,et al.  Using a triangular Matching Approach for Latent Fingerprint and Palmprint identification , 2014, Int. J. Pattern Recognit. Artif. Intell..

[92]  Didier Meuwly,et al.  Automated Fingerprint Identification Systems: From Fingerprints to Fingermarks , 2017, Handbook of Biometrics for Forensic Science.

[93]  Shu-Hung Leung,et al.  Fingerprint recognition using neural network , 1991, Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop.

[94]  C. N. Liu,et al.  Computer-Assisted Fingerprint Encoding and Classification , 1970 .

[95]  Qiang Huo,et al.  Minutiae Matching Based Fingerprint Verification Using Delaunay Triangulation and Aligned-Edge-Guided Triangle Matching , 2005, AVBPA.

[96]  Yanmin Niu,et al.  Fingerprint matching using OrientationCodes and PolyLines , 2007, Pattern Recognit..

[97]  Anil K. Jain,et al.  On-line fingerprint verification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[98]  Anil K. Jain,et al.  Robust Minutiae Extractor: Integrating Deep Networks and Fingerprint Domain Knowledge , 2017, 2018 International Conference on Biometrics (ICB).