Strain-controlled nonvolatile magnetization switching

Abstract We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

[1]  M. Brandt,et al.  In situ manipulation of magnetic anisotropy in magnetite thin films , 2008 .

[2]  E. Gorter Some Properties of Ferrites in Connection with Their Chemistry , 1955, Proceedings of the IRE.

[3]  V. Harris,et al.  Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures , 2009 .

[4]  J. Honig,et al.  Charge ordering and elastic constants in Fe3-xZnxxO4 , 2000 .

[5]  C. Nan,et al.  Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures , 2009 .

[6]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[7]  Sebastiaan van Dijken,et al.  Electric-field control of magnetic domain wall motion and local magnetization reversal , 2011, Scientific Reports.

[8]  C. Nan,et al.  Phase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic/ferroelectric layered heterostructures , 2011 .

[9]  X. Liu,et al.  GaMnAs-based hybrid multiferroic memory device . , 2008, 0801.4191.

[10]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[11]  N. Mathur,et al.  Converse magnetoelectric coupling in multilayer capacitors , 2008 .

[12]  Influence of strain on the magnetization and magnetoelectric effect inLa0.7A0.3MnO3∕PMN−PT(001)(A=Sr,Ca) , 2006, cond-mat/0609760.

[13]  A. Authier,et al.  Physical properties of crystals , 2007 .

[14]  R. Gross,et al.  Multiferroic materials based on artificial thin film heterostructures , 2007 .

[15]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[16]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[17]  X. Moya,et al.  Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field , 2013, Nature Communications.

[18]  T. Miyazaki,et al.  The Physics of Ferromagnetism , 2012 .

[19]  A. Rushforth,et al.  Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures , 2008, 0801.0886.

[20]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[21]  R. Gross,et al.  Giant magnetoelastic effects in BaTiO3-based extrinsic multiferroic hybrids , 2012, 1208.4738.

[22]  Hermann Kohlstedt,et al.  Magnetic tunnel junction on a ferroelectric substrate , 2009 .

[23]  L. Eng,et al.  Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructures , 2013 .

[24]  R. Gross,et al.  Nonvolatile, reversible electric-field controlled switching of remanent magnetization in multifunctional ferromagnetic/ferroelectric hybrids , 2011 .

[25]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[26]  Christian Binek,et al.  Magnetoelectric switching of exchange bias. , 2005, Physical review letters.

[27]  M. Brandt,et al.  Ga1-xMnxAs/piezoelectric actuator hybrids : A model system for magnetoelastic magnetization manipulation , 2008 .

[28]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[29]  E. Tsymbal,et al.  Ferroelectric control of magnetism in BaTiO3 /Fe heterostructures via interface strain coupling , 2007 .

[30]  Sung-chul Shin,et al.  Spin engineering of CoPd alloy films via the inverse piezoelectric effect , 2003 .

[31]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[32]  D. Sander,et al.  The correlation between mechanical stress and magnetic anisotropy in ultrathin films , 1999 .

[33]  M. Brandt,et al.  Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature , 2008, 0810.0389.

[34]  C. Nan,et al.  Electric-field control of strain-mediated magnetoelectric random access memory , 2010 .

[35]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[36]  Guomin Yang,et al.  Electrical tuning of magnetism in Fe3O4/PZN-PT multiferroic heterostructures derived by reactive magnetron sputtering , 2010 .

[37]  Y. Iwasaki Stress-driven magnetization reversal in magnetostrictive films with in-plane magnetocrystalline anisotropy , 2002 .

[38]  C. Vaz Electric field control of magnetism in multiferroic heterostructures , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  R. Gross,et al.  Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures , 2010 .

[40]  Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. , 2008, Nature materials.

[41]  R. Ramesh,et al.  Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010 .

[42]  J. Pappis,et al.  Magnetostriction and Permeability of Magnetite and Cobalt-Substituted Magnetite , 1955 .

[43]  M. Farle Ferromagnetic resonance of ultrathin metallic layers , 1998 .