Semi-Automated Design Space Exploration for Formal Modelling

Refinement based formal methods allow the modelling of systems through incremental steps via abstraction. Discovering the right levels of abstraction, formulating correct and meaningful invariants, and analysing faulty models are some of the challenges faced when using this technique. We propose Design Space Exploration that aims to assist a designer by automatically providing high-level modelling guidance.

[1]  Michael J. Butler,et al.  An incremental development of the Mondex system in Event-B , 2007, Formal Aspects of Computing.

[2]  Jean-Raymond Abrial,et al.  The B-book - assigning programs to meanings , 1996 .

[3]  Jim Woodcock,et al.  ZRC – A Refinement Calculus for Z , 1998, Formal Aspects of Computing.

[4]  J. Michael Spivey,et al.  Z Notation - a reference manual (2. ed.) , 1992, Prentice Hall International Series in Computer Science.

[5]  Michael J. Butler,et al.  An Open Extensible Tool Environment for Event-B , 2006, ICFEM.

[6]  J. Michael Spivey,et al.  The Z notation - a reference manual , 1992, Prentice Hall International Series in Computer Science.

[7]  Thai Son Hoang,et al.  Using Design Patterns in Formal Methods: An Event-B Approach , 2008, ICTAC.

[8]  Andreas Fürst,et al.  Design patterns in event-B and their tool support , 2009 .

[9]  MSc PhD Simon Colton BSc Automated Theory Formation in Pure Mathematics , 2002, Distinguished Dissertations.

[10]  Daniel Jackson,et al.  Software Abstractions - Logic, Language, and Analysis , 2006 .

[11]  Alexei Iliasov Design components , 2008 .

[12]  Dines Bjørner,et al.  The Vienna Development Method: The Meta-Language , 1978, Lecture Notes in Computer Science.

[13]  Antoine Requet BART: A Tool for Automatic Refinement , 2008, ABZ.

[14]  Jean-Raymond Abrial,et al.  Modeling in event-b - system and software engineering by Jean-Raymond Abrial , 2010, SOEN.

[15]  Gudmund Grov,et al.  Refinement Plans for Informed Formal Design , 2012, ABZ.

[16]  Alison Pease,et al.  Discovery of Invariants through Automated Theory Formation , 2011 .

[17]  Gudmund Grov,et al.  Reasoned modelling critics: Turning failed proofs into modelling guidance , 2013, Sci. Comput. Program..

[18]  Michael J. Butler,et al.  ProB: A Model Checker for B , 2003, FME.

[19]  Peter Kovacs,et al.  Automating abstractions in formal modelling , 2015 .

[20]  Alison Pease,et al.  Discovery of invariants through automated theory formation , 2012, Formal Aspects of Computing.