Symbolic Quantitative Robustness Analysis of Timed Automata

We study the robust safety problem for timed automata under guard imprecisions which consists in computing an imprecision parameter under which a safety specification holds. We give a symbolic semi-algorithm for the problem based on a parametric data structure, and evaluate its performance in comparison with a recently published one, and with a binary search on enlargement values.

[1]  Wang Yi,et al.  UPPAAL 4.0 , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[2]  David L. Dill,et al.  Timing Assumptions and Verification of Finite-State Concurrent Systems , 1989, Automatic Verification Methods for Finite State Systems.

[3]  Patricia Bouyer,et al.  Robust Analysis of Timed Automata via Channel Machines , 2008, FoSSaCS.

[4]  Pierre-Alain Reynier,et al.  Quantitative Robustness Analysis of Flat Timed Automata , 2011, FoSSaCS.

[5]  Wang Yi,et al.  Timed Automata: Semantics, Algorithms and Tools , 2003, Lectures on Concurrency and Petri Nets.

[6]  Patricia Bouyer,et al.  Robust Model-Checking of Timed Automata via Pumping in Channel Machines , 2011, FORMATS.

[7]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[8]  Ahmed Bouajjani,et al.  Symbolic Techniques for Parametric Reasoning about Counter and Clock Systems , 2000, CAV.

[9]  Nicolas Markey,et al.  Robust safety of timed automata , 2008, Formal Methods Syst. Des..

[10]  Joël Goossens,et al.  Multiprocessor schedulability of arbitrary-deadline sporadic tasks: complexity and antichain algorithm , 2012, Real-Time Systems.

[11]  Igor Walukiewicz,et al.  Using non-convex approximations for efficient analysis of timed automata , 2011, FSTTCS.

[12]  Joost-Pieter Katoen,et al.  The Surprising Robustness of (Closed) Timed Automata against Clock-Drift , 2008, IFIP TCS.

[13]  Jean-François Raskin,et al.  Almost ASAP semantics: from timed models to timed implementations , 2005, Formal Aspects of Computing.

[14]  Martin Fränzle,et al.  A Symbolic Decision Procedure for Robust Safety of Timed Systems , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[15]  Axel Legay,et al.  PyEcdar: Towards Open Source Implementation for Timed Systems , 2013, ATVA.

[16]  Marius Bozga,et al.  IF-2.0: A Validation Environment for Component-Based Real-Time Systems , 2002, CAV.

[17]  Patricia Bouyer,et al.  Forward Analysis of Updatable Timed Automata , 2004, Formal Methods Syst. Des..

[18]  Patricia Bouyer,et al.  Robust Model-Checking of Linear-Time Properties in Timed Automata , 2006, LATIN.

[19]  Conrado Daws,et al.  Symbolic Robustness Analysis of Timed Automata , 2006, FORMATS.

[20]  Wang Yi,et al.  UPPAAL Implementation Secrets , 2002, FTRTFT.

[21]  Stavros Tripakis,et al.  Implementation of Timed Automata: An Issue of Semantics or Modeling? , 2005, FORMATS.

[22]  Jan Willem Polderman,et al.  A Symbolic Algorithm for the Analysis of Robust Timed Automata , 2014, FM.

[23]  Thomas A. Henzinger,et al.  Robust Timed Automata , 1997, HART.

[24]  Kim G. Larsen,et al.  Lower and upper bounds in zone-based abstractions of timed automata , 2004, International Journal on Software Tools for Technology Transfer.

[25]  Kim G. Larsen,et al.  Robust Specification of Real Time Components , 2011, FORMATS.

[26]  Anuj Puri Dynamical Properties of Timed Automata , 2000, Discret. Event Dyn. Syst..