Recognizing 3D objects using photometric invariant

We describe an efficient algorithm for recognizing 3D objects by combining photometric, and geometric invariants. A photometric property is derived, that is invariant to the changes of illumination and to relative object motion with respect to the camera and/or the lighting source in 3D space. We argue that conventional color constancy algorithms can not be used in the recognition of 3D objects. Further we show recognition does not require a full constancy of colors, rather, it only needs something that remains unchanged under the varying light conditions and poses of the objects. Combining the derived color invariant and the spatial constraints on the object surfaces, we identify corresponding positions in the model and the data space coordinates, using centroid invariance of corresponding groups of feature positions. Tests are given to show the stability and efficiency of our approach to 3D object recognition.<<ETX>>

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Ewald Hering Outlines of a theory of the light sense , 1964 .

[3]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[4]  J. Cohen Dependency of the spectral reflectance curves of the Munsell color chips , 1964 .

[5]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[6]  Berthold K. P. Horn,et al.  Determining lightness from an image , 1974, Comput. Graph. Image Process..

[7]  M. H. Brill,et al.  A device performing illuminant-invariant assessment of chromatic relations. , 1978, Journal of theoretical biology.

[8]  O. Faugeras Digital color image processing within the framework of a human visual model , 1979 .

[9]  Valdis Berzins,et al.  Dynamic Occlusion Analysis in Optical Flow Fields , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  John K. Tsotsos,et al.  From [R, G, B] to Surface Reflectance: Computing Color Constant Descriptors in Images , 1987, IJCAI.

[13]  Brian A. Wandell,et al.  The Synthesis and Analysis of Color Images , 1992, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Mark S. Drew,et al.  Color constancy computation in near-Mondrian scenes using a finite dimensional linear model , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[16]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[17]  Douglas C. Brockelbank,et al.  An experimental investigation in the use of color in computational stereopsis , 1989, IEEE Trans. Syst. Man Cybern..

[18]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[19]  Yuichi Ohta,et al.  An approach to color constancy using multiple images , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[20]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  D. Huttenlocher,et al.  Affine Matching With Bounded Sensor Error: Study of Geometric Hashing and Alignment , 1991 .

[22]  Tanveer F. Syeda-Mahmood Data and Model-Driven Selection using Color Regions , 1992, ECCV.

[23]  M. S. Drew,et al.  Diagonal Transforms Suuce for Color Constancy , 1993 .

[24]  Mark S. Drew,et al.  Diagonal transforms suffice for color constancy , 1993, 1993 (4th) International Conference on Computer Vision.

[25]  W. Eric L. Grimson,et al.  Fast and robust 3D recognition by alignment , 1993, 1993 (4th) International Conference on Computer Vision.

[26]  Shree K. Nayar,et al.  Reflectance ratio: A photometric invariant for object recognition , 1993, 1993 (4th) International Conference on Computer Vision.

[27]  W. Eric L. Grimson,et al.  An active visual attention system to play \Where''s Waldo , 1994, Computer Vision and Pattern Recognition.

[28]  W. Eric L. Grimson,et al.  Object recognition by alignment using invariant projections of planar surfaces , 1994, Proceedings of 12th International Conference on Pattern Recognition.