New egg-shaped fullerenes: non-isolated pentagon structures of Tm3N@C(s)(51 365)-C84 and Gd3N@C(s)(51 365)-C84.

Although there are 51 568 non-IPR and 24 IPR structures for C84, the egg-shaped endohedral fullerenes Tm3N@C(s)(51 365)-C84 and Gd3N@C(s)(51 365)-C84 utilize the same non-IPR cage structure as found initially for Tb3N@C(s)(51 365)-C84.

[1]  H. Gibson,et al.  Purification of endohedral trimetallic nitride fullerenes in a single, facile step. , 2005, Journal of the American Chemical Society.

[2]  E. Hajdu,et al.  Materials science: A stable non-classical metallofullerene family , 2000, Nature.

[3]  Marilyn M. Olmstead,et al.  Isolation and Structural Characterization of a Family of Endohedral Fullerenes Including the Large, Chiral Cage Fullerenes Tb3N@C88 and Tb3N@C86 as well as the Ih and D5h Isomers of Tb3N@C80 , 2007 .

[4]  J. Campanera,et al.  General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. , 2005, Angewandte Chemie.

[5]  Luis Echegoyen,et al.  Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88 . , 2007, Journal of the American Chemical Society.

[6]  Frank Hagelberg,et al.  Comparative investigation on non-IPR C68 and IPR C78 fullerenes encaging Sc3N molecules. , 2005, The journal of physical chemistry. A.

[7]  S. Nagase,et al.  C72 isomers: the IPR-satisfying cage is disfavored by both energy and entropy , 2004 .

[8]  Eiji Ōsawa,et al.  Endohedral Metallofullerenes. Are the Isolated Pentagon Rule and Fullerene Structures Always Satisfied , 1997 .

[9]  Hisanori Shinohara,et al.  Structure of a missing-caged metallofullerene: La2@C72. , 2003, Journal of the American Chemical Society.

[10]  S. P. Rath,et al.  Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. , 2004, Chemical communications.

[11]  Tianming Zuo,et al.  Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. , 2006, Journal of the American Chemical Society.

[12]  Yuji Kobayashi,et al.  Materials science: C66 fullerene encaging a scandium dimer , 2000, Nature.

[13]  S. Nagase,et al.  Ca@C72 IPR and non-IPR structures: computed temperature development of their relative concentrations , 2003 .

[14]  Lothar Dunsch,et al.  Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. , 2007, Journal of the American Chemical Society.

[15]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[16]  Shangfeng Yang,et al.  A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39 , 2005, The journal of physical chemistry. B.

[17]  A. Balch,et al.  Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. , 2003, Angewandte Chemie.

[18]  Lothar Dunsch,et al.  Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. , 2007, Angewandte Chemie.

[19]  Tianming Zuo,et al.  Structure and enhanced reactivity rates of the D5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif. , 2006, Journal of the American Chemical Society.

[20]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[21]  Xin Lu,et al.  Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. , 2006, Angewandte Chemie.

[22]  S. Nagase,et al.  La@C72 having a non-IPR carbon cage. , 2006, Journal of the American Chemical Society.