State of Scientific and Technical Knowledge on Pre-crash Evaluation

The recent development and market introduction of various active safety functions within the context of integral safety have generated a demand for evaluation methods (see Chap. 1).

[1]  Martin Baumann,et al.  Methodische und technische Aspekte einer Naturalistic Driving Study , 2011 .

[2]  Ahmed Benmimoun,et al.  Large-Scale FOT for Analyzing the Impacts of Advanced Driver Assistance Systems , 2010 .

[3]  Dirk Ockel,et al.  Evaluation methods for the effectiveness of active safety systems with respect to real world accident analysis , 2009 .

[4]  Dot Hs Integrated Vehicle-Based Safety Systems , 2011 .

[5]  M. Finkelstein DER ZUKUENFTIGE BEDARF DER VERKEHRSSICHERHEITSFORSCHUNG LIEGT BEIM THEMA AKTIVE SICHERHEIT , 1990 .

[6]  Stefan Schramm Methode zur Berechnung der Feldeffektivität integraler Fußgängerschutzsysteme , 2011 .

[7]  F. Roth,et al.  Methodik zur Funktionsentwicklung des vorausschauenden Fussgaengerschutzes , 2008 .

[8]  Jörg Breuer,et al.  Bewertungsverfahren von Fahrerassistenzsystemen , 2009 .

[9]  Kennerly H. Digges,et al.  The Technical Basis for the Center High Mounted Stoplamp , 1985 .

[10]  Hermann Winner,et al.  EVITA. Das Untersuchungswerkzeug für Gefahrensituationen , 2008 .

[11]  Christian Erbsmehl,et al.  Simulation of Real Crashes as a Method for Estimating the Potential Benefits of Advanced SafetyTechnologies , 2009 .

[12]  Marc Green,et al.  "How Long Does It Take to Stop?" Methodological Analysis of Driver Perception-Brake Times , 2000 .

[13]  Thomas A. Dingus,et al.  The 100-Car Naturalistic Driving Study Phase II – Results of the 100-Car Field Experiment , 2006 .

[14]  D. Sackett,et al.  The number needed to treat: a clinically useful measure of treatment effect , 1995, BMJ.

[15]  B Schlag,et al.  Verfahren zur Bewertung der Verkehrssicherheit von Fahrerassistenzsystemen durch objektive Erfassung von Fahrfehlerrisiken / Procedure for traffic safety evaluation of driver assistance systems by objective measurement of driving error risks , 2004 .

[16]  Rikard Fredriksson,et al.  Priorities and Potential of Pedestrian Protection: Accident data, Experimental tests and Numerical Simulations of Car-to-Pedestrian Impacts , 2011 .

[17]  Lars Hannawald,et al.  Benefit Assessment of Forward-Looking Safety Systems , 2011 .

[18]  Hermann Winner,et al.  EVITA - Das Prüfverfahren zur Beurteilung von Antikollisionssystemen , 2015, Handbuch Fahrerassistenzsysteme.

[19]  H. Hautzinger,et al.  Hochrechnung von Daten aus Erhebungen am Unfallort , 2005 .

[20]  M. Zatloukal,et al.  rateEFFECT – Entwicklung eines Werkzeugs zur Effizienzbewertung aktiver Sicherheitssysteme , 2012 .

[21]  Edna Schechtman,et al.  Odds ratio, relative risk, absolute risk reduction, and the number needed to treat--which of these should we use? , 2002, Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research.

[22]  Lars Hannawald,et al.  Benefit Estimation of Secondary Safety Measures in Realworld Pedestrian Accidents , 2011 .

[23]  Daniel Blower,et al.  Advanced Crash Avoidance Technologies (ACAT) Program - Final Report of the Volvo-Ford-UMTRI Project: Safety Impact Methodology for Lane Departure Warning - Method Development and Estimation of Benefits , 2010 .

[24]  Thomas Hummel,et al.  Advanced Driver Assistance Systems for Trucks – Benefit Estimation from Real-Life Accidents , 2011 .

[25]  Thomas Bock Bewertung von Fahrerassistenzsystemen mittels der Vehicle in the Loop-Simulation , 2012 .

[26]  M. Gründl Fehler und Fehlverhalten als Ursache von Verkehrsunfällen und Konsequenzen für das Unfallvermeidungspotenzial und die Gestaltung von Fahrerassistenzsystemen , 2005 .

[27]  Lutz Eckstein,et al.  Assessment of Active and Passive Technical Measures for Pedestrian Protection at the Vehicle Front , 2011 .

[28]  Rikard Fredriksson,et al.  Holland: VRU paradise goes for the next safety level , 2011 .

[29]  Edmund Donges A CONCEPTUAL FRAMEWORK FOR ACTIVE SAFETY IN ROAD TRAFFIC , 1999 .

[30]  F. Leneman,et al.  PreScan, testing and developing active safety applications through simulation , 2008 .

[31]  Mervyn Edwards,et al.  Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components , 2015 .

[32]  T. Bock,et al.  Validation of the Vehicle in the Loop (VIL); A milestone for the simulation of driver assistance systems , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[33]  Robert Fröming,et al.  Fußgängerschutz. Unfallgeschehen, Fahrzeuggestaltung, Testverfahren , 2007 .

[34]  Markus Maurer,et al.  Vehicle in the Loop. Ein innovativer Ansatz zur Kopplung virtueller mit realer Erprobung , 2008 .

[35]  Andrés Aparicio,et al.  EVALUATION OF THE EFFECTIVENESS OF PEDESTRIAN PROTECTION SYSTEMS THROUGH IN-DEPTH ACCIDENT INVESTIGATION, RECONSTRUCTION AND SIMULATION , 2009 .

[36]  Martijn Vis,et al.  Road Safety Performance Indicators: Theory. Deliverable D3.6 of the EU FP6 project SafetyNet. , 2007 .

[37]  J. Hilbe Logistic Regression Models , 2009 .

[38]  Thomas Hummel,et al.  Benefit Estimation of Advanced Driver Assistance Systems for Cars Derived from Real-Life Accidents , 2009 .

[39]  Atsuhiro Konosu,et al.  Injury Risk Assessment at the Timing of a Pedestrian Impact with a Road Surface in a Car-Pedestrian Accident , 2011 .

[40]  Hampton C. Gabler,et al.  Potential effectiveness of integrated forward collision warning, pre-collision brake assist, and automated pre-collision braking systems in real-world, rear-end collisions , 2011 .

[41]  J M Wille,et al.  rateEFFECT - Effectiveness evaluation of active safety systems , 2013 .

[42]  Thomas A. Dingus,et al.  Design of the In-Vehicle Driving Behavior and Crash Risk Study: In Support of the SHRP 2 Naturalistic Driving Study , 2011 .

[43]  Yoichi Sugimoto,et al.  Progress Report on Evaluation of a Pre-Production Head-On Crash Avoidance Assist System Using an Extended “Safety Impact Methodology” (SIM) , 2011 .

[44]  James R. Sayer,et al.  Integrated vehicle-based safety systems: light vehicle field operational test, key findings report. , 2011, Annals of emergency medicine.

[45]  Michel Verhaegen,et al.  Testing advanced driver assistance systems for fault management with the VEHIL test facility , 2004 .

[46]  Robert Zobel,et al.  On the Use of Real-World Accident Data for Assessing the Effectiveness of Automotive Safety Features – Methodology, Timeline and Reliability , 2011 .

[47]  J.F.A.M. van Hoof,et al.  Evaluation of advanced driver assistance system with the VEHIL test facility: experiences and future developments at TNO automotive , 2004 .

[48]  C Erbsmehl,et al.  Standardized pre-crash-scenarios in digital format on the basis of the VUFO simulation , 2013 .

[49]  Hirofumi Aoki,et al.  Development of a safety impact estimation tool for advanced safety technologies , 2009 .

[50]  Sophie Cuny,et al.  Evaluation of the safety benefits of passive and/or on-board active safety applications with mass accident data-bases , 2009 .

[51]  Jens Hoffmann,et al.  Das Darmstädter Verfahren (EVITA) zum Testen und Bewerten von Frontalkollisionsgegenmaßnahmen , 2008 .

[52]  H. Kocherscheidt MOEGLICHKEITEN UND GRENZEN EINER FAHRZEUGSICHERHEITSBEWERTUNG , 1993 .

[53]  Dot Hs,et al.  A Methodology for Estimating Potential Safety Benefits for Pre-Production Driver Assistance Systems , 2008 .

[54]  Oliver Carsten,et al.  Safety Assessment of Driver Assistance Systems , 2001, European Journal of Transport and Infrastructure Research.

[55]  Kip Smith,et al.  Pedestrian injury mitigation by autonomous braking. , 2010, Accident; analysis and prevention.

[56]  Hermann Winner,et al.  Test- und Bewertungsmethoden für Sicherheitssysteme der Bahnführungsebene Test and Evaluation Methods for Safety Systems on the Guidance Level , 2008, Autom..

[57]  D Otte Technical parameters for determination of impact speed for motorcycle accidents: based on methodology and accident data of GIDAS: German in-depth accident study , 2005 .