Approximability of Integer Programming with Generalised Constraints

We study a family of problems, called Maximum Solution, where the objective is to maximise a linear goal function over the feasible integer assignments to a set of variables subject to a set of constraints. This problem is closely related to Integer Linear Programming.When the domain is Boolean (i.e. restricted to {0,1}), the maximum solution problem is identical to the well-studied Max Ones problem, and the approximability is completely understood for all restrictions on the underlying constraints. We continue this line of research by considering domains containing more than two elements. We present two main results: a complete classification for the approximability of all maximal constraint languages, and a complete classification of the approximability of the problem when the set of allowed constraints contains all permutation constraints.Our results are proved by using algebraic results from clone theory and the results indicates that this approach is very useful for classifying the approximability of certain optimisation problems.

[1]  Robert W. Quackenbush A survey of minimal clones , 1995 .

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[4]  Gustav Nordh,et al.  Generalised Integer Programming Based on Logically Defined Relations , 2006, MFCS.

[5]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[6]  Heribert Vollmer,et al.  Playing with Boolean Blocks , Part II : Constraint Satisfaction Problems 1 , 2004 .

[7]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[8]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[9]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[10]  Fredrik Kuivinen Tight Approximability Results for the Maximum Solution Equation Problem over Zp , 2005, MFCS.

[11]  Andrei A. Bulatov A graph of a relational structure and constraint satisfaction problems , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[12]  Roland Berger,et al.  Homogeneous algebras , 2002 .

[13]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[14]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[15]  Pascal Van Hentenryck,et al.  A Generic Arc-Consistency Algorithm and its Specializations , 1992, Artif. Intell..

[16]  Viggo Kann,et al.  Some APX-completeness results for cubic graphs , 2000, Theor. Comput. Sci..

[17]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[18]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[19]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[20]  Henning Schnoor,et al.  Enumerating All Solutions for Constraint Satisfaction Problems , 2007, STACS.

[21]  Víctor Dalmau,et al.  A new tractable class of constraint satisfaction problems , 2005, Annals of Mathematics and Artificial Intelligence.

[22]  Peter Jeavons,et al.  Quantified Constraints: Algorithms and Complexity , 2003, CSL.

[23]  Martin C. Cooper,et al.  Soft Constraints: Complexity and Multimorphisms , 2003, CP.

[24]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[25]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[26]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[27]  Edward Marczewski Homogeneous operations and homogeneous algebras , 1964 .

[28]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.

[29]  Joseph Naor,et al.  Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality , 1993, Math. Program..

[30]  Christoph M. Hoffmann,et al.  Group-Theoretic Algorithms and Graph Isomorphism , 1982, Lecture Notes in Computer Science.

[31]  A. Pixley,et al.  Functionally complete algebras generating distributive and permutable classes , 1970 .

[32]  Hubie Chen,et al.  The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case , 2006, SIAM J. Comput..

[33]  Peter Jonsson,et al.  Near-Optimal Nonapproximability Results for Some NPO PB-Complete Problems , 1998, Inf. Process. Lett..

[34]  Martin C. Cooper,et al.  The complexity of soft constraint satisfaction , 2006, Artif. Intell..

[35]  Martin C. Cooper,et al.  Supermodular functions and the complexity of MAX CSP , 2005, Discret. Appl. Math..

[36]  Ola Angelsmark,et al.  A Microstructure Based Approach to Constraint Satisfaction Optimisation Problems , 2005, FLAIRS Conference.

[37]  I. Rosenberg MINIMAL CLONES I: THE FIVE TYPES , 1986 .

[38]  David A. Cohen,et al.  Tractable Decision for a Constraint Language Implies Tractable Search , 2004, Constraints.

[39]  Luca Trevisan,et al.  The Approximability of Constraint Satisfaction Problems , 2001, SIAM J. Comput..

[40]  Martin C. Cooper,et al.  Tractable Constraints on Ordered Domains , 1995, Artif. Intell..

[41]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[42]  Joseph Naor,et al.  Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..

[43]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[44]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[45]  Giorgio Ausiello,et al.  Structure Preserving Reductions among Convex Optimization Problems , 1980, J. Comput. Syst. Sci..

[46]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[47]  A. Bulatov Combinatorial problems raised from 2-semilattices , 2006 .

[48]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[49]  Hubie Chen Quantified Constraint Satisfaction, Maximal Constraint Languages, and Symmetric Polymorphisms , 2005, STACS.

[50]  Peter Jonsson,et al.  The Approximability of Three-valued MAX CSP , 2004, SIAM J. Comput..

[51]  Philippe Jégou,et al.  A filtering process for general constraint-satisfaction problems: achieving pairwise-consistency using an associated binary representation , 1989, [Proceedings 1989] IEEE International Workshop on Tools for Artificial Intelligence.

[52]  Peter Jeavons,et al.  Learnability of quantified formulas , 1999, Theor. Comput. Sci..

[53]  Gerhard J. Woeginger An efficient algorithm for a class of constraint satisfaction problems , 2002, Oper. Res. Lett..