Estimates on the Size of Symbol Weight Codes

The study of codes for powerline communications has garnered much interest over the past decade. Various types of codes such as permutation codes, frequency permutation arrays, and constant composition codes have been proposed over the years. In this paper, we study a type of code called bounded symbol weight codes which was first introduced by Versfeld in 2005, and a related family of codes that we term constant symbol weight codes. We provide new upper and lower bounds on the size of bounded symbol weight and constant symbol weight codes. We also give direct and recursive constructions of codes for certain parameters.

[1]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[2]  J. N. Ridley,et al.  Constructing Coset Codes With Optimal Same-Symbol Weight for Detecting Narrowband Interference in $M$-FSK Systems , 2010, IEEE Transactions on Information Theory.

[3]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[4]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..

[5]  Torleiv Kløve,et al.  Distance-Preserving and Distance-Increasing Mappings From Ternary Vectors to Permutations , 2008, IEEE Transactions on Information Theory.

[6]  Francesco Pappalardi,et al.  Enumerating permutation polynomials over finite fields by degree II , 2001, Finite Fields Their Appl..

[7]  G. Mullen,et al.  Frequency permutation arrays , 2005, math/0511173.

[8]  Peter Dukes Coding with injections , 2012, Des. Codes Cryptogr..

[9]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[10]  Rudolf Lide,et al.  Finite fields , 1983 .

[11]  P. Vijay Kumar,et al.  Improved constructions and bounds for 2-D optical orthogonal codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[12]  Yeow Meng Chee,et al.  Linear Size Optimal $q$-ary Constant-Weight Codes and Constant-Composition Codes , 2010, IEEE Transactions on Information Theory.

[13]  A. Vinck,et al.  On Constant-Composition Codes Over , 2003 .

[14]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..

[15]  Cunsheng Ding,et al.  A Construction of Optimal Constant Composition Codes , 2006, Des. Codes Cryptogr..

[16]  Torleiv Kløve,et al.  Permutation arrays for powerline communication and mutually orthogonal latin squares , 2004, IEEE Transactions on Information Theory.

[17]  Charles J. Colbourn,et al.  On constant composition codes , 2006, Discret. Appl. Math..

[18]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[19]  R. Stanley,et al.  Algebraic enumeration , 1996 .

[20]  Gérard D. Cohen,et al.  Coding with Permutations , 1979, Inf. Control..

[21]  N. Sloane,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I , 1993 .

[22]  Cunsheng Ding,et al.  Combinatorial constructions of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[23]  A. J. Han Vinck,et al.  Coded Modulation for Power Line Communications , 2011, ArXiv.

[24]  Alexander Vardy,et al.  Upper bounds for constant-weight codes , 2000, IEEE Trans. Inf. Theory.

[25]  Tor Helleseth,et al.  Constant Composition Codes as Subcodes of Cyclic Codes , 2011, IEEE Transactions on Information Theory.

[26]  Gennian Ge,et al.  Group Divisible Codes and Their Application in the Construction of Optimal Constant-Composition Codes of Weight Three , 2008, IEEE Transactions on Information Theory.

[27]  Gérard D. Cohen,et al.  On Bounded Weight Codes , 2010, IEEE Transactions on Information Theory.

[28]  A. J. Han Vinck,et al.  On constant-composition codes over Zq , 2003, IEEE Trans. Inf. Theory.

[29]  Matti J. Aaltonen,et al.  A new upper bound on nonbinary block codes , 1990, Discret. Math..

[30]  Sophie Huczynska Equidistant frequency permutation arrays and related constant composition codes , 2010, Des. Codes Cryptogr..

[31]  Cunsheng Ding,et al.  Combinatorial constructions of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[32]  Harald Niederreiter,et al.  Finite fields: Author Index , 1996 .

[33]  H.C. Ferreira,et al.  Reed-Solomon coding to enhance the reliability of M-FSK in a power line environment , 2005, International Symposium on Power Line Communications and Its Applications, 2005..

[34]  Sophie Huczynska Powerline communication and the 36 officers problem , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.