A new MMOCAA-MFE method for compressible miscible displacement in porous media

Abstract Combining the modified method of characteristics with adjusted advection with a splitting positive definite mixed element scheme, we establish a new mixed finite element procedure for solving compressible miscible displacement in porous media. This procedure can preserve the mass conservation globally, the coefficient matrix of the mixed system is symmetric positive definite and the flux equation is separated from the pressure equation. We analyse the convergence and give an optimal L 2 -norm error estimate. Finally we present some numerical results to confirm our theoretical analysis.

[1]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[2]  Hong Wang,et al.  An Optimal-Order Error Estimate for a Family of ELLAM-MFEM Approximations to Porous Medium Flow , 2008, SIAM J. Numer. Anal..

[3]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[4]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[5]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[6]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[7]  Dong Liang,et al.  An ELLAM-MFEM Solution Technique for Compressible Fluid Flows in Porous Media with Point Sources and Sinks , 2000 .

[8]  Richard E. Ewing,et al.  The approximation of the pressure by a mixed method in the simulation of miscible displacement , 1983 .

[9]  Mary F. Wheeler,et al.  Some improved error estimates for the modified method of characteristics , 1989 .

[10]  Richard E. Ewing,et al.  A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media , 1983 .

[11]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[12]  Todd Arbogast,et al.  A fully conservative Eulerian-Lagrangian method for a convection-diffusion problem in a solenoidal field , 2010, J. Comput. Phys..

[13]  A. S. Andrew,et al.  MRF: A FORTRAN IV computer program for the generation of univariant phase equilibria , 1980 .

[14]  Dan-Ping Yang,et al.  Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems , 2000, Math. Comput..

[15]  Zhang Jian-song A fully-discrete splitting positive definite mixed element scheme finite for compressible miscible displacement in porous media , 2006 .

[16]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[17]  Felipe Pereira,et al.  On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs , 1997 .

[18]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[19]  Danping Yang A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media , 2001 .

[20]  G. R. Shubin,et al.  An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions , 1988 .

[21]  Dong Liang,et al.  An ELLAM Approximation for Highly Compressible Multicomponent Flows in Porous Media , 2002 .

[22]  M. Aurada,et al.  Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.

[23]  Hong Wang,et al.  An Optimal-Order Error Estimate for an ELLAM Scheme for Two-Dimensional Linear Advection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[24]  T. F. Russell,et al.  An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .

[25]  Jean E. Roberts,et al.  Numerical methods for a model for compressible miscible displacement in porous media , 1983 .

[26]  J. J. Douglas,et al.  Finite Difference Methods for Two-Phase Incompressible Flow in Porous Media , 1983 .

[27]  Hong Wang,et al.  An Optimal-Order Error Estimate to ELLAM Schemes for Transient Advection-Diffusion Equations on Unstructured Meshes , 2010, SIAM J. Numer. Anal..

[28]  So-Hsiang Chou,et al.  MIXED FINITE ELEMENT METHODS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT IN POROUS MEDIA , 1991 .

[29]  Yirang Yuan,et al.  An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method , 2009 .