Bio-directed synthesis and assembly of nanomaterials.

This tutorial review provides an overview of bio-directed synthesis of nanomaterials, starting with the foundation of biomineralization research--how organisms are able to biomineralize materials in vivo--and progressing to studies of biomineralization in vitro. This research is of interest to biologists, chemists and materials scientists alike, especially in light of efforts to find 'greener' methods of inorganic material synthesis. Examples of applications of nanomaterials synthesized by these methods are provided to demonstrate the end goals of biomineralization research.

[1]  I. Shumilin,et al.  Coupled Action of Cadmium Metal and Hydrogenase in Formate Photodecomposition Sensitized by CdS , 1996 .

[2]  I. Yamashita,et al.  Cadmium Sulfide Nanoparticle Synthesis in Dps Protein from Listeria innocua , 2007 .

[3]  S. Kelley,et al.  Nucleotide-directed growth of semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[4]  Edward H. Sargent,et al.  Efficient Infrared‐Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma , 2005 .

[5]  James E Crowe,et al.  Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. , 2005, Nano letters.

[6]  Anilesh Kumar,et al.  RNA-mediated fluorescent Q-PbS nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  A. Belcher,et al.  Bacterial biosynthesis of cadmium sulfide nanocrystals. , 2004, Chemistry & biology.

[8]  Nicole Poulsen,et al.  Silica Morphogenesis by Alternative Processing of Silaffins in the Diatom Thalassiosira pseudonana* , 2004, Journal of Biological Chemistry.

[9]  T. Pradeep,et al.  Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains , 2002 .

[10]  D. Schüler,et al.  Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. , 2007, Angewandte Chemie.

[11]  H. Nikaido,et al.  Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins , 1997, Journal of bacteriology.

[12]  Lars Baltzer,et al.  Substrate modulation of the activity of an artificial nanoesterase made of peptide-functionalized gold nanoparticles. , 2007, Angewandte Chemie.

[13]  M. Hildebrand,et al.  Identification of Proteins from a Cell Wall Fraction of the Diatom Thalassiosira pseudonana , 2006, Molecular & Cellular Proteomics.

[14]  Atsushi Arakaki,et al.  Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. , 2007, Trends in biotechnology.

[15]  W. Tremel,et al.  Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. , 2007, Biomaterials.

[16]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[17]  Xavier Turon,et al.  Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions , 2003, Microscopy research and technique.

[18]  D. A. Russell,et al.  Glyconanoparticles for the colorimetric detection of cholera toxin. , 2007, Analytical chemistry.

[19]  P. Kamat,et al.  Single‐Walled Carbon Nanotube–CdS Nanocomposites as Light‐Harvesting Assemblies: Photoinduced Charge‐Transfer Interactions , 2005 .

[20]  B. Kay,et al.  Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries. , 2005, Current opinion in biotechnology.

[21]  Daniel I. C. Wang,et al.  Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. , 2007, Small.

[22]  P. Lopez,et al.  Biogenic Silica Patterning: Simple Chemistry or Subtle Biology? , 2003, Chembiochem : a European journal of chemical biology.

[23]  R. Naik,et al.  Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. , 2004, Chemical communications.

[24]  Joseph M. Slocik and Rajesh R. Naik Biological Assembly of Hybrid Inorganic Nanomaterials , 2007 .

[25]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[26]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[27]  E. Spoerke,et al.  Influence of Engineered Peptides Cadmium Sulfide Nanocrystals , 2007 .

[28]  B. Ohtani,et al.  Photocatalytic syntheses of azoxybenzene by visible light irradiation of silica-coated cadmium sulfide nanocomposites. , 2007, Chemical communications.

[29]  A. Singh,et al.  Retention of Enzymatic Activity of α-Amylase in the Reductive Synthesis of Gold Nanoparticles , 2007 .

[30]  Atsushi Arakaki,et al.  A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum magneticum Strain AMB-1* , 2003, The Journal of Biological Chemistry.

[31]  Rajesh R Naik,et al.  Constrained iron catalysts for single-walled carbon nanotube growth. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[32]  T. Mandal,et al.  Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. , 2007, Chemistry.

[33]  A. Komeili Molecular mechanisms of magnetosome formation. , 2007, Annual review of biochemistry.

[34]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[35]  B. Eaton,et al.  RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles , 2004, Science.

[36]  J. Weaver,et al.  Enzymatic Synthesis and Nanostructural Control of Gallium Oxide at Low Temperature , 2005 .

[37]  Rajesh R Naik,et al.  Enzyme immobilization in a biomimetic silica support , 2004, Nature Biotechnology.

[38]  Itamar Willner,et al.  Probing biocatalytic transformations with CdSe-ZnS QDs. , 2006, Journal of the American Chemical Society.

[39]  W. Tremel,et al.  Co-expression and Functional Interaction of Silicatein with Galectin , 2006, Journal of Biological Chemistry.

[40]  Bin Zhao,et al.  Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. , 2007, FEMS microbiology letters.

[41]  R. B. Frankel,et al.  Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications , 1999, Applied Microbiology and Biotechnology.

[42]  R. Gordon,et al.  A Special Issue on Diatom Nanotechnology , 2005 .

[43]  I. Willner,et al.  Growing Metal Nanoparticles by Enzymes , 2006 .

[44]  P. Schultz,et al.  Cover Picture: Expanding the Genetic Code (Angew. Chem. Int. Ed. 1/2005) , 2005 .

[45]  S. J. Clarson,et al.  Bioinspired mineralisation: macromolecule mediated synthesis of amorphous germania structures , 2005 .

[46]  C. J. Murray,et al.  Peptide Templates for Nanoparticle Synthesis Derived from Polymerase Chain Reaction‐Driven Phage Display , 2004 .

[47]  Sarah L. Sewell,et al.  Biomimetic Synthesis of Titanium Dioxide Utilizing the R5 Peptide Derived from Cylindrotheca fusiformis , 2006 .

[48]  D. Morse,et al.  Molecular biology of demosponge axial filaments and their roles in biosilicification , 2003, Microscopy research and technique.

[49]  Y. Qian,et al.  Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine's assistance. , 2007, Chemistry.

[50]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[51]  Mark Hildebrand,et al.  Prospects of manipulating diatom silica nanostructure. , 2005, Journal of nanoscience and nanotechnology.