Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum

[1]  M. Fukuda,et al.  Evidence of artemisinin-resistant malaria in western Cambodia. , 2008, The New England journal of medicine.

[2]  X. Su,et al.  Drug resistance and genetic mapping in Plasmodium falciparum , 2008, Current Genetics.

[3]  X. Su,et al.  Effects of Plasmodium falciparum mixed infections on in vitro antimalarial drug tests and genotyping. , 2008, The American journal of tropical medicine and hygiene.

[4]  Deepak Gaur,et al.  Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. , 2008, Cell host & microbe.

[5]  Saurabh Gupta,et al.  Current and prospective pharmacological targets in relation to antimigraine action , 2008, Naunyn-Schmiedeberg's Archives of Pharmacology.

[6]  Peter G. Schultz,et al.  In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen , 2008, Proceedings of the National Academy of Sciences.

[7]  Yingyao Zhou,et al.  Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. , 2008, Nature chemical biology.

[8]  Matthew Bogyo,et al.  Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. , 2008, Nature chemical biology.

[9]  S. Kurup,et al.  Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: part I. , 2007, Anti-cancer agents in medicinal chemistry.

[10]  X. Su,et al.  Genetic linkage and association analyses for trait mapping in Plasmodium falciparum , 2007, Nature Reviews Genetics.

[11]  D. Wirth,et al.  High-Throughput Plasmodium falciparum Growth Assay for Malaria Drug Discovery , 2006, Antimicrobial Agents and Chemotherapy.

[12]  Adam Yasgar,et al.  Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Jun O. Liu,et al.  A clinical drug library screen identifies astemizole as an antimalarial agent , 2006, Nature chemical biology.

[14]  F. Cohen,et al.  Searching for New Antimalarial Therapeutics amongst Known Drugs , 2006, Chemical biology & drug design.

[15]  D. Fidock,et al.  pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum , 2005, Molecular microbiology.

[16]  S. Hay,et al.  The global distribution of clinical episodes of Plasmodium falciparum malaria , 2005, Nature.

[17]  R. Harrington Part II , 2004, Bitter Freedom.

[18]  J. Wootton,et al.  Genetic mapping in the human malaria parasite Plasmodium falciparum , 2004, Molecular microbiology.

[19]  François Nosten,et al.  Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number , 2004, The Lancet.

[20]  X. Su,et al.  Genetic and biochemical aspects of drug resistance in malaria parasites. , 2004, Current drug targets. Infectious disorders.

[21]  L. Maroteaux,et al.  Agonist actions of dihydroergotamine at 5‐HT2B and 5‐HT2C receptors and their possible relevance to antimigraine efficacy , 2003, British journal of pharmacology.

[22]  Momiao Xiong,et al.  Multiple transporters associated with malaria parasite responses to chloroquine and quinine , 2003, Molecular microbiology.

[23]  Yongyuth Yuthavong,et al.  Insights into antifolate resistance from malarial DHFR-TS structures , 2003, Nature Structural Biology.

[24]  M. Bermejo,et al.  Kinetic modeling of triamterene intestinal absorption and its inhibition by folic acid and methotrexate. , 2003, Journal of drug targeting.

[25]  Hao Wu,et al.  R/qtl: QTL Mapping in Experimental Crosses , 2003, Bioinform..

[26]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[27]  Kateryna D. Makova,et al.  Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum , 2002, Nature.

[28]  J. Kublin,et al.  Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. , 2002, The Journal of infectious diseases.

[29]  J Mottram,et al.  Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. , 2000, Chemistry & biology.

[30]  K. Kirk,et al.  Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum , 2000, Nature.

[31]  J C Wootton,et al.  A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. , 1999, Science.

[32]  P. Rathod,et al.  Variations in frequencies of drug resistance in Plasmodium falciparum. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  B. Lindemann,et al.  Blockade of epithelial Na+ channels by triamterenes — Underlying mechanisms and molecular basis , 1996, Pflügers Archiv.

[34]  T. Wellems,et al.  Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A. Cowman,et al.  Drug resistance and the P-glycoprotein homologues of Plasmodium falciparum. , 1993, Seminars in cell biology.

[36]  Thomas E. Wellems,et al.  Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross , 1990, Nature.

[37]  A. Cowman,et al.  Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum , 1990, Nature.

[38]  T. Burkot,et al.  Genetic analysis of the human malaria parasite Plasmodium falciparum. , 1987, Science.

[39]  I. Rosenberg,et al.  Competitive inhibition of folic acid absorption in rat jejunum by triamterene. , 1986, The Journal of laboratory and clinical medicine.

[40]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[41]  Pollock La Further experience with dihydroergotamine methanesulfonate in the treatment of migraine; with a note on the use of cafergone. , 1949 .

[42]  S. Kurup,et al.  Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: Part II. , 2008, Anti-cancer agents in medicinal chemistry.

[43]  G. McVean,et al.  Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome , 2007, Nature Genetics.

[44]  Pardis C Sabeti,et al.  A genome-wide map of diversity in Plasmodium falciparum , 2007, Nature Genetics.

[45]  Kyle T. Siebenthall,et al.  Genome variation and evolution of the malaria parasite Plasmodium falciparum , 2007, Nature Genetics.

[46]  W. Siegert,et al.  Antifolate effect of triamterene on human leucocytes and on a human lymphoma cell line , 2004, European Journal of Clinical Pharmacology.

[47]  L. Pollock Further experience with dihydroergotamine methanesulfonate in the treatment of migraine; with a note on the use of cafergone. , 1949, Annals of western medicine and surgery.