Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.

We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.

[1]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[2]  D. Häussinger,et al.  Deletion of HOG1 Leads to Osmosensitivity in Starvation-Induced, but not Rapamycin-Dependent Atg8 Degradation and Proteolysis: Further Evidence for Different Regulatory Mechanisms in Yeast Autophagy , 2006, Autophagy.

[3]  Teresa M. Przytycka,et al.  Identifying Causal Genes and Dysregulated Pathways in Complex Diseases , 2011, PLoS Comput. Biol..

[4]  J. Uhm,et al.  The transcriptional network for mesenchymal transformation of brain tumours , 2010 .

[5]  Samantha A. Morris,et al.  CellNet: Network Biology Applied to Stem Cell Engineering , 2014, Cell.

[6]  N. Belogortseva,et al.  Regulation of selective autophagy onset by a Ypt/Rab GTPase module , 2012, Proceedings of the National Academy of Sciences.

[7]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[8]  N. Færgeman,et al.  Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae , 2014 .

[9]  J. Collins,et al.  A network biology approach to prostate cancer , 2007, Molecular systems biology.

[10]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[11]  A. Mayer,et al.  Microautophagy of the Nucleus Coincides with a Vacuolar Diffusion Barrier at Nuclear–Vacuolar Junctions , 2010, Molecular biology of the cell.

[12]  S. Subramani,et al.  A yeast MAPK cascade regulates pexophagy but not other autophagy pathways , 2010, The Journal of cell biology.

[13]  P. Roach,et al.  Antagonistic Controls of Autophagy and Glycogen Accumulation by Snf1p, the Yeast Homolog of AMP-Activated Protein Kinase, and the Cyclin-Dependent Kinase Pho85p , 2001, Molecular and Cellular Biology.

[14]  T. Noda,et al.  Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. , 1995, Biochemical and biophysical research communications.

[15]  M. Niwa,et al.  Late Phase of the Endoplasmic Reticulum Stress Response Pathway Is Regulated by Hog1 MAP Kinase* , 2010, The Journal of Biological Chemistry.

[16]  P. Novick,et al.  The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants , 1989, The Journal of cell biology.

[17]  Vineet Bafna,et al.  Inferring gene ontologies from pairwise similarity data , 2014, Bioinform..

[18]  Eric L. Weiss,et al.  Cbk1 Regulation of the RNA-Binding Protein Ssd1 Integrates Cell Fate with Translational Control , 2009, Current Biology.

[19]  S. Subramani,et al.  Peroxisome size provides insights into the function of autophagy-related proteins. , 2009, Molecular biology of the cell.

[20]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[21]  T. Ideker,et al.  Development of Ultra-High-Density Screening Tools for Microbial “Omics” , 2014, PloS one.

[22]  D. Klionsky,et al.  Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures , 2012, Nature Structural &Molecular Biology.

[23]  D. Klionsky,et al.  Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. , 2010, Molecular cell.

[24]  Daniel J Klionsky,et al.  Vps51 Is Part of the Yeast Vps Fifty-three Tethering Complex Essential for Retrograde Traffic from the Early Endosome and Cvt Vesicle Completion* , 2003, The Journal of Biological Chemistry.

[25]  D. Klionsky,et al.  Phosphatidylinositol 4-Kinases Are Required for Autophagic Membrane Trafficking* , 2012, The Journal of Biological Chemistry.

[26]  D. Klionsky,et al.  Mitophagy in Yeast Occurs through a Selective Mechanism* , 2008, Journal of Biological Chemistry.

[27]  Hyojin Kim,et al.  YeastNet v3: a public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae , 2013, Nucleic Acids Res..

[28]  A. Kiger,et al.  Coordination between RAB GTPase and phosphoinositide regulation and functions , 2012, Nature Reviews Molecular Cell Biology.

[29]  R. Schneiter,et al.  The Cdc42 effectors Ste20, Cla4, and Skm1 down-regulate the expression of genes involved in sterol uptake by a mitogen-activated protein kinase-independent pathway. , 2009, Molecular biology of the cell.

[30]  D. Klionsky,et al.  Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. , 2005, Molecular biology of the cell.

[31]  Sourav Bandyopadhyay,et al.  Rewiring of Genetic Networks in Response to DNA Damage , 2010, Science.

[32]  P. Novick,et al.  A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway , 2009, Proceedings of the National Academy of Sciences.

[33]  H. Bellen,et al.  Huntingtin Functions as a Scaffold for Selective Macroautophagy , 2015, Nature Cell Biology.

[34]  C. Kraft,et al.  Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19 , 2014, EMBO reports.

[35]  M. Sohrmann,et al.  Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease , 2008, Nature Cell Biology.

[36]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[37]  D. Klionsky,et al.  Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway , 1992, The Journal of cell biology.

[38]  D. Klionsky,et al.  Atg26 is Not Involved in Autophagy-Related Pathways in Saccharomyces cerevisiae , 2007, Autophagy.

[39]  Y. Ohsumi,et al.  Selective autophagy regulates insertional mutagenesis by the Ty1 retrotransposon in Saccharomyces cerevisiae. , 2011, Developmental cell.

[40]  P. Novick,et al.  Yeast rab GTPase-activating protein Gyp1p localizes to the Golgi apparatus and is a negative regulator of Ypt1p. , 2001, Molecular biology of the cell.

[41]  Benjamin J. Raphael,et al.  Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes , 2014, Nature Genetics.

[42]  Takeshi Noda,et al.  Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain , 2003, The EMBO journal.

[43]  Chad J. Miller,et al.  Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling , 2015, Cell.

[44]  Y. Sakai,et al.  Pexophagy in Pichia pastoris. , 2008, Methods in enzymology.

[45]  Junying Yuan,et al.  Autophagy in cell death: an innocent convict? , 2005, The Journal of clinical investigation.

[46]  V. Thorsson,et al.  Discovery of regulatory interactions through perturbation: inference and experimental design. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[47]  A. Tong,et al.  Synthetic genetic array analysis in Saccharomyces cerevisiae. , 2006, Methods in molecular biology.

[48]  Vahid Shahrezaei,et al.  The scaffold protein Ste5 directly controls a switch-like mating decision in yeast , 2010, Nature.

[49]  D. Klionsky,et al.  Atg27 is required for autophagy-dependent cycling of Atg9. , 2006, Molecular biology of the cell.

[50]  D. Klionsky,et al.  The quantitative Pho8Delta60 assay of nonspecific autophagy. , 2008, Methods in enzymology.

[51]  D. Rubinsztein,et al.  Autophagy and Aging , 2011, Cell.

[52]  Sean R. Collins,et al.  Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions. , 2006, Methods.

[53]  T. Stevens,et al.  Assembly of the Yeast Vacuolar H+-ATPase Occurs in the Endoplasmic Reticulum and Requires a Vma12p/Vma22p Assembly Complex , 1998, The Journal of cell biology.

[54]  D. Goldfarb,et al.  Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae , 2004, Journal of Cell Science.

[55]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[56]  G. Daum,et al.  Phosphatidylethanolamine, a Limiting Factor of Autophagy in Yeast Strains Bearing a Defect in the Carboxypeptidase Y Pathway of Vacuolar Targeting* , 2007, Journal of Biological Chemistry.

[57]  D. Klionsky,et al.  The progression of peroxisomal degradation through autophagy requires peroxisomal division , 2014, Autophagy.

[58]  F. Inagaki,et al.  Atg8‐family interacting motif crucial for selective autophagy , 2010, FEBS letters.

[59]  Jinzhong Zhang,et al.  Ypt1/Rab1 regulates Hrr25/CK1δ kinase activity in ER–Golgi traffic and macroautophagy , 2015, The Journal of cell biology.

[60]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[61]  Eric W. Deutsch,et al.  A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis , 2013, Nature.

[62]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[63]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[64]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[65]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[66]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[67]  M. Komatsu,et al.  Autophagy: More Than a Nonselective Pathway , 2012, International journal of cell biology.

[68]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[69]  Ruedi Aebersold,et al.  Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase , 2014, Molecular cell.

[70]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[71]  Daphne Koller,et al.  Sharing and Specificity of Co-expression Networks across 35 Human Tissues , 2014, PLoS Comput. Biol..

[72]  D. Klionsky,et al.  Aspartyl Aminopeptidase Is Imported from the Cytoplasm to the Vacuole by Selective Autophagy in Saccharomyces cerevisiae* , 2011, The Journal of Biological Chemistry.

[73]  D. Klionsky,et al.  The Ras/cAMP-dependent Protein Kinase Signaling Pathway Regulates an Early Step of the Autophagy Process in Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[74]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..

[75]  H. Stenmark,et al.  How do ESCRT proteins control autophagy? , 2009, Journal of Cell Science.

[76]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[77]  N. Heintz,et al.  Autophagy and Its Possible Roles in Nervous System Diseases, Damage and Repair , 2005, Autophagy.

[78]  Ken E. Whelan,et al.  The Automation of Science , 2009, Science.

[79]  Y. Ohsumi,et al.  A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. , 2004, Molecular biology of the cell.

[80]  Bernhard O. Palsson,et al.  Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach , 2006, PLoS Comput. Biol..

[81]  C. Burd,et al.  FYVE Domain Targets Pib1p Ubiquitin Ligase to Endosome and Vacuolar Membranes* , 2001, The Journal of Biological Chemistry.

[82]  D. Klionsky,et al.  The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. , 2007, Molecular biology of the cell.

[83]  D. Klionsky,et al.  The Core Molecular Machinery of Autophagosome Formation , 2013 .

[84]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[85]  T. Ideker,et al.  A gene ontology inferred from molecular networks , 2012, Nature Biotechnology.

[86]  Sean R. Collins,et al.  A strategy for extracting and analyzing large-scale quantitative epistatic interaction data , 2006, Genome Biology.

[87]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[88]  Roded Sharan,et al.  Experimental design schemes for learning Boolean network models , 2014, Bioinform..

[89]  Andrea Califano,et al.  Reverse‐engineering human regulatory networks , 2012, Wiley interdisciplinary reviews. Systems biology and medicine.

[90]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[91]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[92]  D. Klionsky,et al.  A genomic screen for yeast mutants defective in selective mitochondria autophagy. , 2009, Molecular biology of the cell.

[93]  Nils J Faergeman,et al.  Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. , 2014, FEMS yeast research.