Experimental implementation of a virtual optical beam propagator system based on a Fresnel diffraction algorithm

Abstract. We describe the experimental implementation of a virtual optical beam propagator system. This virtual propagator system allows the experimental study of beam propagation without physically moving any element. The approach uses a Fresnel diffraction algorithm (usually called the angular spectrum method) and its implementation on a spatial light modulator. We discuss the limits of the technique and provide a detailed description of the experimental procedures. Experimental results are included where we design a hologram capable of producing two patterns at two different distances, and we can change the effective plane of observation by changing the encoded propagation instead of by moving any element on the experimental system.

[1]  D M Cottrell,et al.  Space-variant Fresnel transform optical correlator. , 1992, Applied optics.

[2]  Carlos Ferreira,et al.  Fast algorithms for free-space diffraction patterns calculation , 1999 .

[3]  J. Horner,et al.  Phase-only matched filtering. , 1984, Applied optics.

[4]  Jeffrey A. Davis,et al.  Analysis of the propagation dynamics and Gouy phase of Airy beams using the fast Fresnel transform algorithm. , 2014, Applied optics.

[5]  Maciej Sypek,et al.  Light propagation in the Fresnel region. New numerical approach , 1995 .

[6]  Jeffrey A. Davis,et al.  Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns. , 2009, Applied optics.

[7]  Giovanni Milione,et al.  All-digital wavefront sensing for structured light beams. , 2014, Optics express.

[8]  John J Healy,et al.  Fast linear canonical transforms. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  D M Cottrell,et al.  Smoothing of the edge-enhanced impulse response from binary phase-only filters using random binary patterns. , 1989, Applied optics.

[10]  M. Bandres,et al.  Accelerating parabolic beams. , 2008, Optics letters.

[11]  D M Cottrell,et al.  Fresnel lens-encoded binary phase-only filters for optical pattern recognition. , 1989, Optics letters.

[12]  D M Cottrell,et al.  Multiple imaging phase-encoded optical elements written as programmable spatial light modulators. , 1990, Applied optics.

[13]  J L Horner,et al.  Pattern recognition with binary phase-only filters. , 1985, Applied optics.

[14]  Daniel Flamm,et al.  Beam-quality measurements using a spatial light modulator. , 2012, Optics letters.

[15]  Zeev Zalevsky,et al.  Computation considerations and fast algorithms for calculating the diffraction integral , 1997 .

[16]  J. Goodman Introduction to Fourier optics , 1969 .

[17]  D. Christodoulides,et al.  Accelerating finite energy Airy beams. , 2007, Optics letters.

[18]  L. Onural,et al.  Sampling of the diffraction field. , 2000, Applied optics.

[19]  Jeffrey A. Davis,et al.  Ray matrix analysis of the fast Fresnel transform with applications towards liquid crystal displays. , 2012, Applied optics.

[20]  Jeffrey A. Davis,et al.  Polarization eigenstates for twisted-nematic liquid-crystal displays. , 1998, Applied optics.