Complex Methods in Harmonic Analysis

[1]  P. Fatou Séries trigonométriques et séries de Taylor , 1906 .

[2]  A. Zygmund,et al.  On higher gradients of harmonic functions , 1964 .

[3]  G. Hardy The mean value of modulus of analytic functions , 1915 .

[4]  A. Zygmund On the boundary values of functions of several complex variables, I , 1949 .

[5]  E. Stein,et al.  Generalization of the Cauchy-Riemann Equations and Representations of the Rotation Group , 1968 .

[6]  S. Bochner Group Invariance of Cauchy's Formula in Several Variables , 1944 .

[7]  S. Bochner CLASSES OF HOLOMORPHIC FUNCTIONS OF SEVERAL VARIABLES IN CIRCULAR DOMAINS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Elias M. Stein,et al.  On the theory of harmonic functions of several variables , 1960 .

[9]  G. Hardy The Mean Value of the Modulus of an Analytic Function , 1915 .

[10]  H. Helson PROOF OF A CONJECTURE OF STEINHAUS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Calderón COMMUTATORS OF SINGULAR INTEGRAL OPERATORS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Stein,et al.  H CLASSES OF HOLOMORPHIC FUNCTIONS IN TUBE DOMAINS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.