Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory

We study equilibrium liquid crystal configurations in three-dimensional geometries, within the continuum Landau-de Gennes theory. We obtain explicit bounds for the equilibrium scalar order parameters in terms of the temperature and material-dependent constants. We explicitly quantify the temperature regimes where the Landau-de Gennes predictions match and the temperature regimes where the Landau-de Gennes predictions do not match the probabilistic second-moment definition of the Q-tensor order parameter. The regime of agreement may be interpreted as the regime of validity of the Landau-de Gennes theory since the Landau-de Gennes theory predicts large values of the equilibrium scalar order parameters – larger than unity, in the low-temperature regime. We discuss a modified Landau-de Gennes energy functional which yields physically realistic values of the equilibrium scalar order parameters in all temperature regimes.

[1]  Iam-Choon Khoo,et al.  Introduction to Liquid Crystals , 2006, Liquid Crystals.

[2]  M. G. Forest,et al.  Exact banded patterns from a Doi-Marrucci-Greco model of nematic liquid crystal polymers. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Apala Majumdar,et al.  Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory , 2010 .

[4]  Stephen Kitson,et al.  Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states , 2002 .

[5]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  J. Craggs Applied Mathematical Sciences , 1973 .

[8]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[9]  E. Gartland,et al.  Fine structure of defects in radial nematic droplets , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[11]  B. Bahadur,et al.  Liquid Crystals — Applications and Uses: (Volume 2) , 1991 .

[12]  V. Slastikov,et al.  On spatial variations of nematic ordering , 2008 .

[13]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[14]  P. Sheng,et al.  Introduction to Liquid Crystals , 1976 .

[15]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .

[16]  G. R. Luckhurst,et al.  Free Energies in the Landau and Molecular Field Approaches , 1986 .

[17]  M. Gregory Forest,et al.  Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows , 2000 .

[18]  G. de Matteis,et al.  Bifurcation analysis and computer simulation of biaxial liquid crystals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  S. Chandrasekhar Liquid Crystals: Cholesteric liquid crystals , 1992 .

[20]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[21]  W. H. Toliver,et al.  Liquid Crystals , 1912, Nature.

[22]  Valeriy Slastikov,et al.  Critical points of the Onsager functional on a sphere , 2005 .