Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) a Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation

We introduce a novel method for describing and controlling a 3D smoke simulation. Using harmonic analysis and principal component analysis, we define an underlying description of the fluid flow that is compact and meaningful to non-expert users. The motion of the smoke can be modified with high level tools, such as animated current curves , attractors and tornadoes. Our simulation is controllable, interactive and stable for arbitrarily long periods of time. The simulation's computational cost increases linearly in the number of motion samples and smoke particles. Our adaptive smoke particle representation conveniently incorporates the surface-like characteristics of real smoke.

[1]  Raghu Machiraju,et al.  Path-based control of smoke simulations , 2006, SCA '06.

[2]  Rüdiger Westermann,et al.  GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments , 2005, Comput. Graph. Forum.

[3]  Yizhou Yu,et al.  Taming liquids for rapidly changing targets , 2005, SCA '05.

[4]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[5]  Fabrice Neyret,et al.  Simulation of smoke based on vortex filament primitives , 2005, SCA '05.

[6]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[7]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[8]  Marie-Paule Cani,et al.  A practical self-shadowing algorithm for interactive hair animation , 2005, Graphics Interface.

[9]  Andreas Kolb,et al.  Hardware-based simulation and collision detection for large particle systems , 2004, Graphics Hardware.

[10]  Frédéric H. Pighin,et al.  Modeling and editing flows using advected radial basis functions , 2004, SCA '04.

[11]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[12]  Dani Lischinski,et al.  Target-driven smoke animation , 2004, ACM Trans. Graph..

[13]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[14]  Duc Quang Nguyen,et al.  Smoke simulation for large scale phenomena , 2003, ACM Trans. Graph..

[15]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[16]  Arnauld Lamorlette,et al.  Structural modeling of flames for a production environment , 2002, SIGGRAPH.

[17]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[18]  Jean Gallier,et al.  Geometric Methods and Applications: For Computer Science and Engineering , 2000 .

[19]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[20]  H. Anton Calculus: A New Horizon , 1998 .

[21]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[22]  Eugene Fiume,et al.  Turbulent wind fields for gaseous phenomena , 1993, SIGGRAPH.

[23]  Jakub Wejchert,et al.  Animation aerodynamics , 1991, SIGGRAPH.

[24]  Craig Upson,et al.  Combining physical and visual simulation—creation of the planet Jupiter for the film “2010” , 1986, SIGGRAPH.

[25]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[26]  G. Arfken Mathematical Methods for Physicists , 1967 .

[27]  E. Guendelman,et al.  Industrial Light + Magic , 2012 .

[28]  R. Fedkiw,et al.  Directable photorealistic liquids , 2004, SCA '04.

[29]  D. Margerit Mouvement et dynamique des filaments et des anneaux tourbillons de faible épaisseur , 1997 .

[30]  Manuel N. Gamito,et al.  Two-dimensional simulation of gaseous phenomena using vortex particles , 1995 .

[31]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[32]  P. Schröder,et al.  Stable, Circulation-preserving, Simplicial Fluids , 2022 .