Can one design a geometry engine?
暂无分享,去创建一个
[1] A. Tarski,et al. Sur les ensembles définissables de nombres réels , 1931 .
[2] V. Pambuccian. Orthogonality as single primitive notion for metric planes , 2007 .
[3] Thomas William Barrett,et al. MORITA EQUIVALENCE , 2015, The Review of Symbolic Logic.
[4] L. W. Szczerba,et al. Interpretability of Elementary Theories , 1977 .
[5] Dmitri Martila,et al. On the Millennium Prize Problems , 2015 .
[6] Johann A. Makowsky,et al. Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..
[7] Valentin Goranko,et al. Logical Theories for Fragments of Elementary Geometry , 2007, Handbook of Spatial Logics.
[8] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[9] J. Baldwin. Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert , 2018 .
[10] Julien Narboux,et al. Formalization of the arithmetization of Euclidean plane geometry and applications , 2019, J. Symb. Comput..
[11] Karl Georg Christian von Staudt. Geometrie der Lage , 1847 .
[12] Nathaniel Miller,et al. Extended Abstract of Euclid and His Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry , 2006, Diagrams.
[13] Alfred Tarski,et al. Tarski's System of Geometry , 1999, Bulletin of Symbolic Logic.
[14] D. Hilbert,et al. Principles of Mathematical Logic , 1950 .
[15] Xiao-Shan Gao,et al. Mathematics mechanization and applications after thirty years , 2007, Frontiers of Computer Science in China.
[16] Jeremy Avigad,et al. A FORMAL SYSTEM FOR EUCLID’S ELEMENTS , 2008, The Review of Symbolic Logic.
[17] E. Beth. The foundations of mathematics : a study in the philosophy of science , 1959 .
[18] Deepak Kapur,et al. A Refutational Approach to Geometry Theorem Proving , 1988, Artif. Intell..
[19] Roger C. Alperin. A Mathematical Theory of Origami Constructions and Numbers , 2000 .
[20] Max A. Zorn. Eleventh Meeting of the Association for Symbolic Logic , 1949, J. Symb. Log..
[21] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[22] Victor Pambuccian. Ternary Operations as Primitive Notions for Constructive Plane Geometry V , 1994, Math. Log. Q..
[23] R. Hartshorne. Geometry: Euclid and Beyond , 2005 .
[24] Alexandra Shlapentokh,et al. Definability and decidability in infinite algebraic extensions , 2014, Ann. Pure Appl. Log..
[25] Albert Visser,et al. When Bi-Interpretability Implies Synonymy , 2014 .
[26] E. Artin. Coordinates in Affine Geometry , 1965 .
[27] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[28] Navin M. Singhi,et al. Projective planes I , 2010, Eur. J. Comb..
[29] Tetsuo Ida,et al. Logical and algebraic view of Huzita's origami axioms with applications to computational origami , 2007, SAC '07.
[30] N. V. Ivanov. Affine planes, ternary rings, and examples of non-Desarguesian planes , 2016, 1604.04945.
[31] John Harrison,et al. Some new results on decidability for elementary algebra and geometry , 2009, Ann. Pure Appl. Log..
[32] B. Poizat. Les petits cailloux : une approche modèle-théorique de l'algorithmie , 1995 .
[33] Michael Beeson,et al. Proof and Computation in Geometry , 2012, Automated Deduction in Geometry.
[34] Wenjun Wu,et al. Basic principles of mechanical theorem proving in elementary geometries , 1986, Journal of Automated Reasoning.
[35] Anand Pillay,et al. Introduction to stability theory , 1983, Oxford logic guides.
[36] A. Tarski,et al. Metamathematische Methoden in der Geometrie , 1983 .
[37] Bruno Courcelle,et al. Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.
[38] Saugata Basu,et al. Algorithms in Real Algebraic Geometry: A Survey , 2014, ArXiv.
[39] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[40] Victor Pambuccian. Ternary Operations as Primitive Notions for Constructive Plane Geometry , 1989, Math. Log. Q..
[41] Nöbeling. Algebraische Theorie der Körper , 1931 .
[42] Hans Halvorson,et al. From Geometry to Conceptual Relativity , 2017 .
[43] B. F. Caviness,et al. Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.
[44] J. Koenigsmann. Defining $\mathbb{Z}$ in $\mathbb{Q}$ , 2010, 1011.3424.
[45] Victor Pambuccian,et al. Ternary Operations as Primitive Notions for Constructive Plane Geometry III , 1993, Math. Log. Q..
[46] Julia Robinson,et al. Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.
[47] Wanda Szmielew,et al. From Affine to Euclidean Geometry: An Axiomatic Approach , 1983 .
[48] J. Koenigsmann. On a question of Abraham Robinson , 2016 .
[49] H. Gelernter,et al. Realization of a geometry theorem proving machine , 1995, IFIP Congress.
[50] Mihai Prunescu. Fast Quantifier Elimination Means P = NP , 2006, CiE.
[51] D. Loveland,et al. Empirical explorations of the geometry theorem machine , 1960, IRE-AIEE-ACM '60 (Western).
[52] Wenjun Wu,et al. Mechanical Theorem Proving in Geometries , 1994, Texts and Monographs in Symbolic Computation.
[53] E. L.. The Foundations of Geometry , 1891, Nature.
[54] Victor Pambuccian,et al. Axiomatizing geometric constructions , 2008, J. Appl. Log..
[55] G. M.. Grundlagen der Geometrie , 1909, Nature.
[56] J. Baldwin. Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski† , 2019 .
[57] Albert Visser,et al. Categories of theories and interpretations , 2004 .
[58] P. Du Val,et al. A Modern View of Geometry , 1962 .
[60] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .
[61] J. Koenigsmann. Defining Z in Q , 2010 .
[62] A. Macintyre,et al. Elimination of Quantifiers in Algebraic Structures , 1983 .