Can one design a geometry engine?

AbstractWe survey the status of decidability of the first order consequences in various axiomatizations of Hilbert-style Euclidean geometry. We draw attention to a widely overlooked result by Martin Ziegler from 1980, which proves Tarski’s conjecture on the undecidability of finitely axiomatizable theories of fields. We elaborate on how to use Ziegler’s theorem to show that the consequence relations for the first order theory of the Hilbert plane and the Euclidean plane are undecidable. As new results we add: (A)The first order consequence relations for Wu’s orthogonal and metric geometries (Wen-Tsün Wu, 1984), and for the axiomatization of Origami geometry (J. Justin 1986, H. Huzita 1991) are undecidable. It was already known that the universal theory of Hilbert planes and Wu’s orthogonal geometry is decidable. We show here using elementary model theoretic tools that (B)the universal first order consequences of any geometric theory T of Pappian planes which is consistent with the analytic geometry of the reals is decidable. The techniques used were all known to experts in mathematical logic and geometry in the past but no detailed proofs are easily accessible for practitioners of symbolic computation or automated theorem proving.

[1]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[2]  V. Pambuccian Orthogonality as single primitive notion for metric planes , 2007 .

[3]  Thomas William Barrett,et al.  MORITA EQUIVALENCE , 2015, The Review of Symbolic Logic.

[4]  L. W. Szczerba,et al.  Interpretability of Elementary Theories , 1977 .

[5]  Dmitri Martila,et al.  On the Millennium Prize Problems , 2015 .

[6]  Johann A. Makowsky,et al.  Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..

[7]  Valentin Goranko,et al.  Logical Theories for Fragments of Elementary Geometry , 2007, Handbook of Spatial Logics.

[8]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[9]  J. Baldwin Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert , 2018 .

[10]  Julien Narboux,et al.  Formalization of the arithmetization of Euclidean plane geometry and applications , 2019, J. Symb. Comput..

[11]  Karl Georg Christian von Staudt Geometrie der Lage , 1847 .

[12]  Nathaniel Miller,et al.  Extended Abstract of Euclid and His Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry , 2006, Diagrams.

[13]  Alfred Tarski,et al.  Tarski's System of Geometry , 1999, Bulletin of Symbolic Logic.

[14]  D. Hilbert,et al.  Principles of Mathematical Logic , 1950 .

[15]  Xiao-Shan Gao,et al.  Mathematics mechanization and applications after thirty years , 2007, Frontiers of Computer Science in China.

[16]  Jeremy Avigad,et al.  A FORMAL SYSTEM FOR EUCLID’S ELEMENTS , 2008, The Review of Symbolic Logic.

[17]  E. Beth The foundations of mathematics : a study in the philosophy of science , 1959 .

[18]  Deepak Kapur,et al.  A Refutational Approach to Geometry Theorem Proving , 1988, Artif. Intell..

[19]  Roger C. Alperin A Mathematical Theory of Origami Constructions and Numbers , 2000 .

[20]  Max A. Zorn Eleventh Meeting of the Association for Symbolic Logic , 1949, J. Symb. Log..

[21]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[22]  Victor Pambuccian Ternary Operations as Primitive Notions for Constructive Plane Geometry V , 1994, Math. Log. Q..

[23]  R. Hartshorne Geometry: Euclid and Beyond , 2005 .

[24]  Alexandra Shlapentokh,et al.  Definability and decidability in infinite algebraic extensions , 2014, Ann. Pure Appl. Log..

[25]  Albert Visser,et al.  When Bi-Interpretability Implies Synonymy , 2014 .

[26]  E. Artin Coordinates in Affine Geometry , 1965 .

[27]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[28]  Navin M. Singhi,et al.  Projective planes I , 2010, Eur. J. Comb..

[29]  Tetsuo Ida,et al.  Logical and algebraic view of Huzita's origami axioms with applications to computational origami , 2007, SAC '07.

[30]  N. V. Ivanov Affine planes, ternary rings, and examples of non-Desarguesian planes , 2016, 1604.04945.

[31]  John Harrison,et al.  Some new results on decidability for elementary algebra and geometry , 2009, Ann. Pure Appl. Log..

[32]  B. Poizat Les petits cailloux : une approche modèle-théorique de l'algorithmie , 1995 .

[33]  Michael Beeson,et al.  Proof and Computation in Geometry , 2012, Automated Deduction in Geometry.

[34]  Wenjun Wu,et al.  Basic principles of mechanical theorem proving in elementary geometries , 1986, Journal of Automated Reasoning.

[35]  Anand Pillay,et al.  Introduction to stability theory , 1983, Oxford logic guides.

[36]  A. Tarski,et al.  Metamathematische Methoden in der Geometrie , 1983 .

[37]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[38]  Saugata Basu,et al.  Algorithms in Real Algebraic Geometry: A Survey , 2014, ArXiv.

[39]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[40]  Victor Pambuccian Ternary Operations as Primitive Notions for Constructive Plane Geometry , 1989, Math. Log. Q..

[41]  Nöbeling Algebraische Theorie der Körper , 1931 .

[42]  Hans Halvorson,et al.  From Geometry to Conceptual Relativity , 2017 .

[43]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[44]  J. Koenigsmann Defining $\mathbb{Z}$ in $\mathbb{Q}$ , 2010, 1011.3424.

[45]  Victor Pambuccian,et al.  Ternary Operations as Primitive Notions for Constructive Plane Geometry III , 1993, Math. Log. Q..

[46]  Julia Robinson,et al.  Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.

[47]  Wanda Szmielew,et al.  From Affine to Euclidean Geometry: An Axiomatic Approach , 1983 .

[48]  J. Koenigsmann On a question of Abraham Robinson , 2016 .

[49]  H. Gelernter,et al.  Realization of a geometry theorem proving machine , 1995, IFIP Congress.

[50]  Mihai Prunescu Fast Quantifier Elimination Means P = NP , 2006, CiE.

[51]  D. Loveland,et al.  Empirical explorations of the geometry theorem machine , 1960, IRE-AIEE-ACM '60 (Western).

[52]  Wenjun Wu,et al.  Mechanical Theorem Proving in Geometries , 1994, Texts and Monographs in Symbolic Computation.

[53]  E. L. The Foundations of Geometry , 1891, Nature.

[54]  Victor Pambuccian,et al.  Axiomatizing geometric constructions , 2008, J. Appl. Log..

[55]  G. M. Grundlagen der Geometrie , 1909, Nature.

[56]  J. Baldwin Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski† , 2019 .

[57]  Albert Visser,et al.  Categories of theories and interpretations , 2004 .

[58]  P. Du Val,et al.  A Modern View of Geometry , 1962 .

[60]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[61]  J. Koenigsmann Defining Z in Q , 2010 .

[62]  A. Macintyre,et al.  Elimination of Quantifiers in Algebraic Structures , 1983 .