Experimental and correlation study of selected physical properties of aqueous blends of potassium sarcosinate and 2-piperidineethanol as a solvent for CO2 capture

[1]  M. S. Shaikh,et al.  Measurement and prediction of physical properties of aqueous sodium salt of L-phenylalanine , 2017 .

[2]  M. S. Shaikh,et al.  Selected physical properties of aqueous potassium salt of l-phenylalanine as a solvent for CO2 capture , 2016 .

[3]  Azmi Mohd Shariff,et al.  Surface Tension and Derived Surface Thermodynamic Properties of Aqueous Sodium Salt of L-Phenylalanine , 2016 .

[4]  M. S. Shaikh,et al.  Physical properties of aqueous sodium salt solution of α-methylalanine (Na-AMALA) , 2016 .

[5]  M. S. Shaikh,et al.  High-pressure Solubility of Carbon Dioxide in Aqueous Sodium L- Prolinate Solution☆ , 2016 .

[6]  M. S. Shaikh,et al.  Measurement and prediction of physical properties of aqueous sodium l-prolinate and piperazine as a solvent blend for CO2 removal , 2015 .

[7]  B. Bruggen,et al.  Equilibrium solubility, density, viscosity and corrosion rate of carbon dioxide in potassium lysinate solution , 2015 .

[8]  Meng-Hui Li,et al.  Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid , 2015 .

[9]  Badrul Mohamed Jan,et al.  Degradation study of piperazine, its blends and structural analogs for CO2 capture: A review , 2014 .

[10]  Meng-Hui Li,et al.  Thermophysical property characterization of aqueous amino acid salt solution containing serine , 2014 .

[11]  M. Mercedes Maroto-Valer,et al.  An overview of current status of carbon dioxide capture and storage technologies , 2014 .

[12]  Meng-Hui Li,et al.  Densities, viscosities, refractive indices, and electrical conductivities of aqueous alkali salts of α-alanine , 2014 .

[13]  M. Aroua,et al.  Density, Surface Tension, and Viscosity of Ionic Liquids (1-Ethyl-3-methylimidazolium diethylphosphate and 1,3-Dimethylimidazolium dimethylphosphate) Aqueous Ternary Mixtures with MDEA , 2014 .

[14]  M. S. Shaikh,et al.  Physicochemical Properties of Aqueous Solutions of Sodium l-Prolinate as an Absorbent for CO2 Removal , 2014 .

[15]  S. Ma'mun Solubility of Carbon Dioxide in Aqueous Solution of Potassium Sarcosine from 353 to 393K , 2014 .

[16]  T. Mooney,et al.  Adverse Effects of Ocean Acidification on Early Development of Squid (Doryteuthis pealeii) , 2013, PloS one.

[17]  Jinwon Park,et al.  Solubility of CO2 in Amino-Acid-Based Solutions of (Potassium Sarcosinate), (Potassium Alaninate + Piperazine), and (Potassium Serinate + Piperazine) , 2013 .

[18]  Inna Kim,et al.  Selection and characterization of phase-change solvent for carbon dioxide capture: precipitating system☆ , 2013 .

[19]  Inna Kim,et al.  Understanding Precipitation in Amino Acid Salt systems at Process Conditions , 2013 .

[20]  Eric F. May,et al.  The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies , 2012 .

[21]  P. Carrette,et al.  Amine degradation in CO2 capture. I. A review , 2012 .

[22]  Gary T. Rochelle,et al.  Thermal degradation of amines for CO2 capture , 2012 .

[23]  D. Brilman,et al.  Solubility of CO2 in aqueous potassium l-prolinate solutions—absorber conditions , 2012 .

[24]  K. K. Lau,et al.  Physical Properties of Piperazine (PZ) Activated Aqueous Solutions of 2-Amino-2-hydroxymethyl-1,3-propanediol (AHPD + PZ) , 2012 .

[25]  Payam Shafigh,et al.  Using waste plastic bottles as additive for stone mastic asphalt , 2011 .

[26]  K. K. Lau,et al.  Physical Properties and Thermal Decomposition of Aqueous Solutions of 2-Amino-2-hydroxymethyl-1, 3-propanediol (AHPD) , 2011 .

[27]  Jian-Gang Lu,et al.  Density, Viscosity, and Surface Tension of Aqueous Solutions of Potassium Glycinate + Piperazine in the Range of (288.15 to 323.15) K , 2011 .

[28]  L. K. Keong,et al.  Physical Properties of Aqueous Solutions of Piperazine and (2-Amino-2-methyl-1-propanol + Piperazine) from (298.15 to 333.15) K , 2011 .

[29]  K. A. Hoff,et al.  Investigation of amine amino acid salts for carbon dioxide absorption , 2010 .

[30]  Jian-Gang Lu,et al.  CO2 Capture Using Activated Amino Acid Salt Solutions in a Membrane Contactor , 2010 .

[31]  A. Mendes,et al.  Solubility of carbon dioxide in aqueous solutions of amino acid salts , 2009 .

[32]  Helmut Rode,et al.  Development of an Economic Post-Combustion Carbon Capture Process , 2009 .

[33]  M. J. Groeneveld,et al.  Precipitation regime for selected amino acid salts for CO2 capture from flue gases , 2009 .

[34]  M. I. Mutalib,et al.  Density and Excess Properties of Aqueous N-Methyldiethanolamine Solutions from (298.15 to 338.15) K , 2008 .

[35]  C. D. Wilfred,et al.  Viscosity, Refractive Index, Surface Tension, and Thermal Decomposition of Aqueous N-Methyldiethanolamine Solutions from (298.15 to 338.15) K , 2008 .

[36]  S. Kersten,et al.  Physiochemical Properties of Several Aqueous Potassium Amino Acid Salts , 2008 .

[37]  G. Versteeg,et al.  Characterization of potassium glycinate for carbon dioxide absorption purposes , 2007 .

[38]  Hallvard F. Svendsen,et al.  Experimental validation of a rate-based model for CO2 capture using an AMP solution , 2007 .

[39]  B. Mandal,et al.  Density and Viscosity of Aqueous Solutions of (2-Piperidineethanol + Piperazine) from (288 to 333) K and Surface Tension of Aqueous Solutions of (N-Methyldiethanolamine + Piperazine), (2-Amino-2-methyl-1-propanol + Piperazine), and (2-Piperidineethanol + Piperazine) from (293 to 323) K , 2006 .

[40]  R. Newell,et al.  Prospects for carbon capture and storage technologies , 2004 .

[41]  G. Iglesias-Silva,et al.  Densities and Excess Molar Volumes of Aqueous Solutions of n-Methyldiethanolamine (MDEA) at Temperatures from (283.15 to 363.15) K , 2003 .

[42]  C. M. White,et al.  Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers , 2003, Journal of the Air & Waste Management Association.

[43]  G. Versteeg,et al.  Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 1. Crystallization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids , 2003 .

[44]  G. Versteeg,et al.  Equilibrium solubility of CO2 in aqueous potassium taurate solutions: part 2: Experimental VLE data and model , 2003 .

[45]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[46]  G. Versteeg,et al.  Density, Viscosity, Solubility, and Diffusivity of N2O in Aqueous Amino Acid Salt Solutions , 2001 .

[47]  H. Kretzschmar,et al.  The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam , 2000 .

[48]  R. Hook,et al.  An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds , 1997 .

[49]  Ji-Ho Yoon,et al.  Densities and Viscosities of Monoethanolamine + Ethylene Glycol + Water , 1996 .

[50]  O. C. Sandall,et al.  Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine , 1995 .

[51]  Frank J. Millero,et al.  Viscosity of water at various temperatures , 1969 .

[52]  A. R. Thompson,et al.  Densities and Refractive Indices of Aqueous Monoethanolamine, Diethanolamine, Triethanolamine. , 1964 .