A theoretical model for the prediction of initial growth angles and sites of fretting fatigue cracks

The crack initiation mechanisms under fretting fatigue conditions are investigated. Fretting fatigue tests have been conducted on an aluminium alloy. Two major crack initiation mechanisms are experimentally observed. They are theoretically identified by employing a simple dislocation dipole model and taking into consideration the reverse sliding along dislocation layers and the influence of the distance between these layers. It is shown that cracks may initiate either by an extrusion-intrusion mechanism or a fatigue tensile process. Two parameters respectively linked to each of these initiation mechanisms are proposed to predict crack location. The theoretical crack initial growth directions and locations are shown to correlate very well with the experimental ones. With regards to these initiation processes, a spall detachment mechanism is proposed considering the interaction of microcracks.