TAK1 activation of alpha-TAT1 and microtubule hyperacetylation control AKT signaling and cell growth

[1]  Junyu Wu,et al.  RCCD1 depletion attenuates TGF-β-induced EMT and cell migration by stabilizing cytoskeletal microtubules in NSCLC cells. , 2017, Cancer letters.

[2]  M. Nachury,et al.  Microtubules acquire resistance from mechanical breakage through intralumenal acetylation , 2017, Science.

[3]  M. Nachury,et al.  Tubulin acetylation protects long-lived microtubules against mechanical aging , 2017, Nature Cell Biology.

[4]  L. Andolfi,et al.  Acetylated tubulin is essential for touch sensation in mice , 2016, eLife.

[5]  T. Liang,et al.  Loss of α-Tubulin Acetylation Is Associated with TGF-β-induced Epithelial-Mesenchymal Transition* , 2016, The Journal of Biological Chemistry.

[6]  Xiang-Jiao Yang,et al.  Tubulin acetylation: responsible enzymes, biological functions and human diseases , 2015, Cellular and Molecular Life Sciences.

[7]  Yuyu Song,et al.  Post-translational modifications of tubulin: pathways to functional diversity of microtubules. , 2015, Trends in cell biology.

[8]  J. Ninomiya-Tsuji,et al.  TAK1 control of cell death , 2014, Cell Death and Differentiation.

[9]  S. Heller,et al.  α-Tubulin K40 acetylation is required for contact inhibition of proliferation and cell–substrate adhesion , 2014, Molecular biology of the cell.

[10]  J. Ninomiya-Tsuji,et al.  Activated Macrophage Survival Is Coordinated by TAK1 Binding Proteins , 2014, PloS one.

[11]  P. Codogno,et al.  Reactive Oxygen Species, AMP-activated Protein Kinase, and the Transcription Cofactor p300 Regulate α-Tubulin Acetyltransferase-1 (αTAT-1/MEC-17)-dependent Microtubule Hyperacetylation during Cell Stress* , 2014, Journal of Biological Chemistry.

[12]  J. Olivo-Marin,et al.  αTAT1 catalyses microtubule acetylation at clathrin-coated pits , 2013, Nature.

[13]  E. Perlas,et al.  αTAT1 is the major α-tubulin acetyltransferase in mice , 2013, Nature Communications.

[14]  Xiang-Jiao Yang,et al.  Mice Lacking α-Tubulin Acetyltransferase 1 Are Viable but Display α-Tubulin Acetylation Deficiency and Dentate Gyrus Distortion* , 2013, The Journal of Biological Chemistry.

[15]  A. Andolfo,et al.  Tubulin Acetyltransferase αTAT1 Destabilizes Microtubules Independently of Its Acetylation Activity , 2012, Molecular and Cellular Biology.

[16]  T. Kapoor,et al.  Building complexity: insights into self-organized assembly of microtubule-based architectures. , 2012, Developmental cell.

[17]  P. Paul-Gilloteaux,et al.  ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion. , 2012, European journal of cell biology.

[18]  J. Ninomiya-Tsuji,et al.  TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. , 2012, Blood.

[19]  J. Massagué TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.

[20]  Y. Henis,et al.  Homomeric and heteromeric complexes among TGF-β and BMP receptors and their roles in signaling. , 2011, Cellular signalling.

[21]  M. Goodman,et al.  The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation , 2010, Proceedings of the National Academy of Sciences.

[22]  C. Stournaras,et al.  Control of transforming growth factor β signal transduction by small GTPases , 2009, The FEBS journal.

[23]  C. Heldin,et al.  The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner , 2008, Nature Cell Biology.

[24]  C. Heldin,et al.  Dynamic control of TGF‐β signaling and its links to the cytoskeleton , 2008, FEBS letters.

[25]  Bernhard Schmierer,et al.  TGFβ–SMAD signal transduction: molecular specificity and functional flexibility , 2007, Nature Reviews Molecular Cell Biology.

[26]  Raymond B. Runyan,et al.  TGFβ‐mediated RhoA expression is necessary for epithelial‐mesenchymal transition in the embryonic chick heart , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[27]  T. Hazlett,et al.  Structure and dynamics of the epidermal growth factor receptor C‐terminal phosphorylation domain , 2006, Protein science : a publication of the Protein Society.

[28]  J. Massagué,et al.  Smad transcription factors. , 2005, Genes & development.

[29]  Ying E. Zhang,et al.  Smad-dependent and Smad-independent pathways in TGF-β family signalling , 2003, Nature.

[30]  J. Massagué,et al.  Controlling TGF-β signaling , 2000, Genes & Development.

[31]  J. Ninomiya-Tsuji,et al.  The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway , 1999, Nature.

[32]  K. Irie,et al.  TAB1: An Activator of the TAK1 MAPKKK in TGF-β Signal Transduction , 1996, Science.

[33]  Songbin Fu,et al.  TAK1 lysine 158 is required for TGF-β-induced TRAF6-mediated Smad-independent IKK/NF-κB and JNK/AP-1 activation. , 2011, Cellular signalling.

[34]  R. Derynck,et al.  Smad-dependent and Smad-independent pathways in TGF-beta family signalling. , 2003, Nature.

[35]  J. Massagué,et al.  Controlling TGF-beta signaling. , 2000, Genes & development.

[36]  E. Nogales Structural insights into microtubule function. , 2000, Annual review of biochemistry.

[37]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[38]  K. Irie,et al.  TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. , 1996, Science.