Finiteness of reductions of Hecke orbits
暂无分享,去创建一个
Padmavathi Srinivasan | Mark Kisin | Yeuk Hay Joshua Lam | Ananth N.Shankar | M. Kisin | P. Srinivasan | Ananth N.Shankar
[1] Tetsushi Ito,et al. CM liftings of $K3$ surfaces over finite fields and their applications to the Tate conjecture , 2018, Forum of Mathematics, Sigma.
[2] F. Oort,et al. Complex Multiplication and Lifting Problems , 2013 .
[3] A. Ogus,et al. Tate's conjecture for K3 surfaces of finite height , 1985 .
[4] Benjamin J. Howard,et al. Rapoport–Zink spaces for spinor groups , 2015, Compositio Mathematica.
[5] Shankar Sen. Lie algebras of Galois groups arising from Hodge-Tate modules , 1973 .
[6] F. Oort. Foliations in Moduli Spaces of Abelian Varieties and Dimension of Leaves , 2009 .
[7] M. Kisin. Integral models for Shimura varieties of abelian type , 2010 .
[8] CM liftings of abelian varieties , 2009 .
[9] U. Hartl. On period spaces for p-divisible groups , 2007, 0709.3444.
[10] A. Ogus. Supersingular K3 crystals , 2019 .
[11] A. Ogus. A Crystalline Torelli Theorem for Supersingular K3 Surfaces , 1983 .
[12] Compositio Mathematica,et al. Isocrystals with additional structure , 2018 .
[13] Ziquan Yang. On irreducible symplectic varieties of K3[]-type in positive characteristic , 2023, Advances in Mathematics.
[14] Keerthi Madapusi Pera. The Tate conjecture for K3 surfaces in odd characteristic , 2013, 1301.6326.
[15] F. Oort. Foliations in moduli spaces of abelian varieties , 2002, math/0207050.
[16] M. Kisin. Crystalline representations and F -crystals , 2006 .
[17] P. Scholze,et al. Prisms and prismatic cohomology , 2019, Annals of Mathematics.
[18] Jean-Pierre Serre. Groupes algébriques associés aux modules de Hodge-Tate , 2003 .
[19] P. Deligne. La conjecture de Weil pour les surfacesK3 , 1971 .