Control of panic behavior in a non identical network coupled with a geographical model
暂无分享,去创建一个
Valentina Lanza | M. A. Aziz-Alaoui | Cyrille Bertelle | Guillaume Cantin | Nathalie Verdière | Rodolphe Charrier | Damienne Provitolo | Edwige Dubos-Paillard
[1] T. Carroll,et al. Master Stability Functions for Synchronized Coupled Systems , 1998 .
[2] Henk Nijmeijer,et al. Synchronization and Graph Topology , 2005, Int. J. Bifurc. Chaos.
[3] Bob W. Rink,et al. Coupled cell networks: Semigroups, Lie algebras and normal forms , 2012, 1209.3209.
[4] B. Hassard,et al. Bifurcation formulae derived from center manifold theory , 1978 .
[5] Valentina Lanza,et al. Mathematical Modeling of Human Behaviors During Catastrophic Events: Stability and Bifurcations , 2014, Int. J. Bifurc. Chaos.
[6] Damienne Provitolo,et al. Les comportements humains en situation de catastrophe : de l’observation à la modélisation conceptuelle et mathématique , 2015 .
[7] F. Verhulst. Nonlinear Differential Equations and Dynamical Systems , 1989 .
[8] Christophe Larroque,et al. Tsunami Mapping Related to Local Earthquakes on the French–Italian Riviera (Western Mediterranean) , 2014, Pure and Applied Geophysics.
[9] M. A. Aziz-Alaoui,et al. Synchronization of Chaos , 2006 .
[10] M. Golubitsky,et al. Nonlinear dynamics of networks: the groupoid formalism , 2006 .
[11] Jurgen Kurths,et al. Synchronization in complex networks , 2008, 0805.2976.