Fire and Smoke Model Evaluation Experiment (FASMEE): Modeling gaps and data needs

Yongqiang Liu 1 , Adam Kochanski 2 , Kirk Baker 3 , Ruddy Mell 1 , Rodman Linn 4 , Ronan Paugam 1 , Jan Mandel 5 , Aime Fournier 5 , Mary Ann Jenkins 2 , Scott Goodrick 1 , Gary Achtemeier 1 , Andrew Hudak 1 , Matthew Dickson 1 , Brian Potter 1 , Craig Clements 6 , Shawn Urbanski 1 , Roger Ottmar 1 , Narasimhan Larkin 1 ,Timothy Brown 7 , Nancy French 8 , Susan Prichard 9 , Adam Watts 7 , Derek McNamara

[1]  Yongqiang Liu,et al.  Important parameters for smoke plume rise simulation with Daysmoke , 2010 .

[2]  G. Sarwar,et al.  Impact of a new condensed toluene mechanism on air quality model predictions in the US , 2010 .

[3]  Scott L. Goodrick,et al.  Smoke incursions into urban areas: simulation of a Georgia prescribed burn , 2009 .

[4]  Golam Sarwar,et al.  Model representation of secondary organic aerosol in CMAQv4.7. , 2010, Environmental science & technology.

[5]  William Mell,et al.  Large eddy simulation of forest canopy flow for wildland fire modeling , 2014 .

[6]  R. Ferrare,et al.  Evaluation of surface and upper air fine scale WRF meteorological modeling of the May and June 2010 CalNex period in California , 2013 .

[7]  Gary L. Achtemeier,et al.  Modeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model , 2012, Atmosphere.

[8]  Scott L. Goodrick,et al.  Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke , 2011 .

[9]  Judith Winterkamp,et al.  Studying wildfire behavior using FIRETEC , 2002 .

[10]  Chad M. Hoffman,et al.  A comparison of level set and marker methods for the simulation of wildland fire front propagation , 2016 .

[11]  Neal Fann,et al.  The recent and future health burden of air pollution apportioned across U.S. sectors. , 2013, Environmental science & technology.

[12]  W. Mell,et al.  A physics-based approach to modelling grassland fires , 2007 .

[13]  Jonathan D. Beezley,et al.  Coupled atmosphere-wildland fire modeling with WRF-Fire version 3.3 , 2011 .

[14]  François Pimont,et al.  Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models , 2015, Fire Technology.

[15]  Samuel L. Manzello,et al.  Numerical simulation and experiments of burning douglas fir trees , 2009 .

[16]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[17]  D. Sullivan,et al.  The BlueSky smoke modeling framework , 2008 .

[18]  Jonathan D. Beezley,et al.  Toward an integrated system for fire, smoke and air quality simulations , 2014, 1405.4058.

[19]  Gary L. Achtemeier,et al.  Modelling smoke transport from wildland fires: a review , 2013 .

[20]  Jonathan D. Beezley,et al.  Real time simulation of 2007 Santa Ana fires , 2012, 1202.3209.

[21]  J. Mandel,et al.  Evaluation of WRF-SFIRE performance with field observations from the FireFlux experiment , 2013 .

[22]  P. Dias,et al.  Amazonia and global change. , 2009 .

[23]  François Pimont,et al.  Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC , 2011, Annals of Forest Science.

[24]  A. Sullivan,et al.  Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models , 2007, 0706.4128.

[25]  R. Rothermel A Mathematical Model for Predicting Fire Spread in Wildland Fuels , 2017 .

[26]  David E. Keyes,et al.  Modeling wildland fire propagation with level set methods , 2007, Comput. Math. Appl..

[27]  G. Yarwood,et al.  An Improved Volatility Basis Set for Modeling Organic Aerosol in Both CAMx and CMAQ , 2014 .

[28]  A. Nenes,et al.  ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K + –Ca 2+ –Mg 2+ –NH 4 + –Na + –SO 4 2− –NO 3 − –Cl − –H 2 O aerosols , 2007 .

[29]  D. Byun,et al.  Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System , 2006 .

[30]  S. Freitas,et al.  Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts , 2010 .

[31]  A. Goldstein,et al.  Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield , 2015 .

[32]  G. Sarwar,et al.  Potential impacts of two SO2 oxidation pathways on regional sulfate concentrations: Aqueous-phase oxidation by NO2 and gas-phase oxidation by Stabilized Criegee Intermediates , 2013 .

[33]  Dominique Morvan,et al.  Physical Phenomena and Length Scales Governing the Behaviour of Wildfires: A Case for Physical Modelling , 2011 .

[34]  G. Achtemeier Planned Burn-Piedmont. A local operational numerical meteorological model for tracking smoke on the ground at night: model development and sensitivity tests , 2005 .

[35]  Jonathan D. Beezley,et al.  Recent advances and applications of WRF–SFIRE , 2014 .

[36]  Duane A. Haugen,et al.  Lectures on Air Pollution and Environmental Impact Analyses , 1982 .

[37]  Judith Winterkamp,et al.  Modeling interactions between fire and atmosphere in discrete element fuel beds , 2005 .

[38]  A. Sullivan A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models , 2007, 0706.3074.

[39]  G. Pouliot,et al.  Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches , 2016 .