A novel technique for cohomology computations in engineering practice

The problem of computing cohomology generators of a cell complex is gaining more and more interest in various branches of science ranging from computational physics to biology. Focusing on engineering applications, cohomology generators are currently used in computer aided design (CAD) and in potential definition for computational electromagnetics and fluid dynamics. The aim of this paper is to introduce a novel technique to effectively compute cohomology generators focusing on the application involving the potential definition for h-oriented eddy-current formulations. This technique, which has been called Thinned Current Technique (TCT), is completely automatic, computationally efficient and general. The TCT runs in most cases in linear time and exhibits a speed up of orders of magnitude with respect to the best alternative documented implementation.

[1]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[2]  Ruben Specogna,et al.  Efficient generalized source field computation for h-oriented magnetostatic formulations , 2011 .

[3]  Ruben Specogna,et al.  Critical Analysis of the Spanning Tree Techniques , 2010, SIAM J. Numer. Anal..

[4]  Lauri Kettunen,et al.  Discrete spaces for div and curl-free fields , 1998 .

[5]  Paul Smith,et al.  Computing group cohomology rings from the Lyndon-Hochschild-Serre spectral sequence , 2011, J. Symb. Comput..

[6]  Paul W. Gross,et al.  Electromagnetic Theory and Computation: A Topological Approach , 2004 .

[7]  M. Mrozek,et al.  Homology Computation by Reduction of Chain Complexes , 1998 .

[8]  R. Ho Algebraic Topology , 2022 .

[9]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.

[10]  R. J. Wilson Analysis situs , 1985 .

[11]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[12]  Tamal K. Dey,et al.  Computing handle and tunnel loops with knot linking , 2009, Comput. Aided Des..

[13]  Michail Ilych Monastyrsky,et al.  Topology in Molecular Biology , 2007 .

[14]  R. Specogna,et al.  Efficient Cohomology Computation for Electromagnetic Modeling , 2010 .

[15]  Kay Hameyer,et al.  An algorithm to construct the discrete cohomology basis functions required for magnetic scalar potential formulations without cuts , 2002 .

[16]  Thomas Lewiner,et al.  Optimal discrete Morse functions for 2-manifolds , 2003, Comput. Geom..

[17]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[18]  Leif Kobbelt,et al.  Character animation from 2D pictures and 3D motion data , 2007, TOGS.

[19]  Marian Mrozek,et al.  Coreduction Homology Algorithm , 2009, Discret. Comput. Geom..

[20]  Marian Mrozek,et al.  Homology algorithm based on acyclic subspace , 2008, Comput. Math. Appl..

[21]  P. Dlotko,et al.  Automatic generation of cuts on large-sized meshes for the T–Ω geometric eddy-current formulation , 2009 .

[22]  Hong Qin,et al.  Meshless thin-shell simulation based on global conformal parameterization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  H. Whitney On Products in a Complex. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. R. Kotiuga Toward an algorithm to make cuts for magnetic scalar potentials in finite element meshes , 1988 .

[25]  P. Mezey Group theory of electrostatic potentials: A tool for quantum chemical drug design , 2009 .

[26]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[27]  Henri Poincaré,et al.  Second Complément à l'Analysis Situs , 1900 .

[28]  Henri Poincaré,et al.  Papers on Topology: Analysis Situs and Its Five Supplements , 2010 .

[29]  Rocío González-Díaz,et al.  Irregular Graph Pyramids and Representative Cocycles of Cohomology Generators , 2009, GbRPR.

[30]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[31]  Ruben Specogna,et al.  Geometric T–Ω approach to solve eddy currents coupled to electric circuits , 2008 .

[32]  H. Poincaré,et al.  On Analysis Situs , 2010 .

[33]  P. R. Kotiuga An algorithm to make cuts for magnetic scalar potentials in tetrahedral meshes based on the finite element method , 1989 .

[34]  P. R. Kotiuga On making cuts for magnetic scalar potentials in multiply connected regions , 1987 .

[35]  G. Ellis,et al.  Computing second cohomology of finite groups with trivial coefficients , 1999 .

[36]  David Cohen-Steiner,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, ACM Trans. Graph..

[37]  Lauri Kettunen,et al.  Homology in Electromagnetic Boundary Value Problems , 2010 .

[38]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[39]  Saku Suuriniemi,et al.  Homological computations in electromagnetic modeling , 2004 .

[40]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[41]  Kurt Mehlhorn,et al.  Minimum cycle bases: Faster and simpler , 2009, TALG.

[42]  M. H. Poinoaré Complément à Ľanalysis situs , 1899 .

[43]  P. Dlotko,et al.  Cohomology in electromagnetic modeling , 2011, 1111.2374.

[44]  Ruben Specogna,et al.  Voltage and Current Sources for Massive Conductors Suitable With the $A{\hbox{-}}\chi$ Geometric Eddy-Current Formulation , 2010, IEEE Transactions on Magnetics.

[45]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[46]  Gabor T. Herman,et al.  Geometry of digital spaces , 1998, Optics & Photonics.

[47]  Rocío González-Díaz,et al.  C V ] 2 3 M ay 2 01 1 On the Cohomology of 3 D Digital Images , 2013 .

[48]  Thomas Rylander,et al.  Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.

[49]  Zhuoxiang Ren,et al.  T-/spl Omega/ formulation for eddy-current problems in multiply connected regions , 2002 .