Approaches to High-Dimensional Covariance and Precision Matrix Estimations

This chapter introduces several recent developments for estimating large covariance and precision matrices without assuming the covariance matrix to be sparse. It explains two methods for covariance estimation: namely covariance estimation via factor analysis, and precision Matrix Estimation and Graphical Models. The low rank plus sparse representation holds on the population covariance matrix. The chapter presents several applications of these methods, including graph estimation for gene expression data, and several financial applications. It then shows how estimating covariance matrices of high-dimensional asset excess returns play a central role in applications of portfolio allocations and in risk management. The chapter explains the factor pricing model, which is one of the most fundamental results in finance. It elucidates estimating risks of large portfolios and large panel test of factor pricing models. The chapter illustrates the recent developments of efficient estimations in panel data models.

[1]  P. Fryzlewicz High-dimensional volatility matrix estimation via wavelets and thresholding , 2013 .

[2]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[3]  Dean P. Foster,et al.  The risk inflation criterion for multiple regression , 1994 .

[4]  Gary Chamberlain,et al.  FUNDS, FACTORS, AND DIVERSIFICATION IN ARBITRAGE PRICING MODELS , 1983 .

[5]  M. Rothschild,et al.  Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets , 1983 .

[6]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[7]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[8]  B. Efron The Estimation of Prediction Error , 2004 .

[9]  Tso-Jung Yen,et al.  Discussion on "Stability Selection" by Meinshausen and Buhlmann , 2010 .

[10]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[11]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[12]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[13]  A. Willsky,et al.  Latent variable graphical model selection via convex optimization , 2010 .

[14]  Jianqing Fan,et al.  Large Panel Test of Factor Pricing Models , 2013 .

[15]  Mohsen Pourahmadi,et al.  High-Dimensional Covariance Estimation , 2013 .

[16]  A. Belloni,et al.  Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2011 .

[17]  Mohsen Pourahmadi,et al.  High-Dimensional Covariance Estimation , 2013 .

[18]  H. Zou,et al.  Positive Definite $\ell_1$ Penalized Estimation of Large Covariance Matrices , 2012, 1208.5702.

[19]  Yuan Liao,et al.  Statistical Inferences Using Large Estimated Covariances for Panel Data and Factor Models , 2013, 1307.2662.

[20]  Weidong Liu,et al.  High-dimensional Sparse Precision Matrix Estimation via Sparse Column Inverse Operator ∗ , 2012 .

[21]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[22]  Zehua Chen,et al.  EXTENDED BIC FOR SMALL-n-LARGE-P SPARSE GLM , 2012 .

[23]  M. Hallin,et al.  Determining the Number of Factors in the General Dynamic Factor Model , 2007 .

[24]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[25]  F. Dias,et al.  Determining the number of factors in approximate factor models with global and group-specific factors , 2008 .

[26]  Matteo Barigozzi,et al.  Improved penalization for determining the number of factors in approximate factor models , 2010 .

[27]  Stephen A. Ross,et al.  A Test of the Efficiency of a Given Portfolio , 1989 .

[28]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[29]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[30]  Yujun Wu,et al.  Fast FSR Variable Selection with Applications to Clinical Trials , 2009, Biometrics.

[31]  Bin Yu,et al.  High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.

[32]  Jianqing Fan,et al.  High Dimensional Covariance Matrix Estimation in Approximate Factor Models , 2011, Annals of statistics.

[33]  A. Craig MacKinlay,et al.  Using Generalized Method of Moments to Test Mean‐Variance Efficiency , 1991 .

[34]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[35]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[36]  Seung C. Ahn,et al.  Eigenvalue Ratio Test for the Number of Factors , 2013 .

[37]  Cun-Hui Zhang,et al.  Sparse matrix inversion with scaled Lasso , 2012, J. Mach. Learn. Res..

[38]  Ming Yuan,et al.  High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..

[39]  L. Stefanski,et al.  Controlling Variable Selection by the Addition of Pseudovariables , 2007 .

[40]  George Kapetanios,et al.  A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets , 2010 .

[41]  M. Pesaran Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure , 2004, SSRN Electronic Journal.

[42]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[43]  N. Meinshausen,et al.  Stability selection , 2008, 0809.2932.

[44]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.

[45]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[46]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[47]  Jiahua Chen,et al.  Extended Bayesian information criteria for model selection with large model spaces , 2008 .

[48]  M. Weidner,et al.  Linear Regression for Panel with Unknown Number of Factors as Interactive Fixed Effects , 2014 .

[49]  Marie-Claude Beaulieu,et al.  Multivariate Tests of Mean–Variance Efficiency With Possibly Non-Gaussian Errors , 2007 .

[50]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[51]  Jianqing Fan,et al.  Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[52]  Xiaotong Shen,et al.  Journal of the American Statistical Association Likelihood-based Selection and Sharp Parameter Estimation Likelihood-based Selection and Sharp Parameter Estimation , 2022 .

[53]  Jianqing Fan,et al.  Regularization of Wavelet Approximations , 2001 .

[54]  Peter Schmidt,et al.  GMM estimation of linear panel data models with time-varying individual effects , 2001 .

[55]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[56]  P. Bühlmann,et al.  Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana , 2004, Genome Biology.

[57]  Enrique Sentana,et al.  The Econometrics of Mean-Variance Efficiency Tests: A Survey , 2009 .

[58]  Larry A. Wasserman,et al.  The huge Package for High-dimensional Undirected Graph Estimation in R , 2012, J. Mach. Learn. Res..

[59]  J. Lewellen The Cross Section of Expected Stock Returns , 2014 .

[60]  Ali Jalali,et al.  High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods , 2011, AISTATS.

[61]  Han Liu,et al.  TIGER : A tuning-insensitive approach for optimally estimating Gaussian graphical models , 2017 .

[62]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[63]  Joachim M. Buhmann,et al.  Stability-Based Validation of Clustering Solutions , 2004, Neural Computation.

[64]  M. Pesaran,et al.  Testing CAPM with a Large Number of Assets , 2012, SSRN Electronic Journal.

[65]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[66]  Shaun Lysen,et al.  Permuted Inclusion Criterion: A Variable Selection Technique , 2009 .

[67]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[68]  J. Bai,et al.  Panel Data Models With Interactive Fixed Effects , 2009 .

[69]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[70]  Noureddine El Karoui,et al.  High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation , 2010, 1211.2917.

[71]  Rina Foygel,et al.  Extended Bayesian Information Criteria for Gaussian Graphical Models , 2010, NIPS.

[72]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[73]  Larry A. Wasserman,et al.  Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models , 2010, NIPS.