Emergency stop algorithm for walking humanoid robots

This paper presents an emergency stop algorithm of a walking humanoid robot. There are many cases which force a walking robot to stop quickly without falling. Since an emergency occurs at unpredictable timing and at any state of robot, the stopping motion must be generated in real-time. To overcome these problems, our emergency stop motion is divided into four phases according to the role of the zero-moment point (ZMP). In each phase, approximate analytical solutions of the center of gravity (COG) dynamics is used to generate the motion. During the single support phase, a landing time and position are determined by evaluating the average velocity of the swing leg and the horizontal position of the COG. During the double support phase, the travel distance of the COG and the ZMP are evaluated. The validity of the proposed method is confirmed by simulation and experiment using a humanoid robot HRP-2.

[1]  Kazuhito Yokoi,et al.  The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[2]  Kazuhito Yokoi,et al.  The first human-size humanoid that can fall over safely and stand-up again , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[3]  Yoshihiko Nakamura,et al.  A Fast Online Gait Planning with Boundary Condition Relaxation for Humanoid Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[4]  Masayuki Inaba,et al.  Online mixture and connection of basic motions for humanoid walking control by footprint specification , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[5]  I. Shimoyama,et al.  Dynamic Walk of a Biped , 1984 .

[6]  Shuuji Kajita,et al.  An Analytical Method for Real-Time Gait Planning for Humanoid Robots , 2006, Int. J. Humanoid Robotics.

[7]  Kazuhito Yokoi,et al.  UKEMI: falling motion control to minimize damage to biped humanoid robot , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  M Vukobratović,et al.  Contribution to the synthesis of biped gait. , 1969, IEEE transactions on bio-medical engineering.

[9]  Kazuhito Yokoi,et al.  Real-Time Planning of Humanoid Robot's Gait for Force-Controlled Manipulation , 2004, IEEE/ASME Transactions on Mechatronics.

[10]  Shuuji Kajita,et al.  International Journal of Humanoid Robotics c ○ World Scientific Publishing Company An Analytical Method on Real-time Gait Planning for a Humanoid Robot , 2022 .