Constraints for Using Lambert W Function-Based Explicit Colebrook–White Equation
暂无分享,去创建一个
[1] G. F. Round. An explicit approximation for the friction factor‐reynolds number relation for rough and smooth pipes , 1980 .
[2] G. A. Gregory,et al. Alternate to standard friction factor equation , 1985 .
[3] G. Manadili,et al. Replace implicit equations with signomial functions , 1997 .
[4] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[5] T. K. Serghides. Estimate friction factor accurately , 1984 .
[6] N. Sylvester,et al. Explicit approximations to the solution of Colebrook's friction factor equation , 1982 .
[7] Stuart W. Churchill,et al. Empirical expressions for the shear stress in turbulent flow in commercial pipe , 1973 .
[8] C F Colebrook,et al. TURBULENT FLOW IN PIPES, WITH PARTICULAR REFERENCE TO THE TRANSITION REGION BETWEEN THE SMOOTH AND ROUGH PIPE LAWS. , 1939 .
[9] S. Haaland. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow , 1983 .
[10] N. Chen. An Explicit Equation for Friction Factor in Pipe , 1979 .
[11] D. A. Barry,et al. Real values of the W-function , 1995, TOMS.
[12] T. Ellis,et al. Explicit oxygen concentration expression for estimating extant biodegradation kinetics from respirometric experiments. , 2001, Biotechnology and bioengineering.
[13] Dih Barr,et al. TECHNICAL NOTE. SOLUTIONS OF THE COLEBROOK-WHITE FUNCTION FOR RESISTANCE TO UNIFORM TURBULENT FLOW. , 1981 .
[14] R. Duggleby,et al. Parameter estimation using a direct solution of the integrated Michaelis-Menten equation. , 1999, Biochimica et biophysica acta.
[15] Grant Keady. Colebrook-White Formula for Pipe Flows , 1998 .
[16] D. A. Barry,et al. Algorithm 743: WAPR--a Fortran routine for calculating real values of the W-function , 1995, TOMS.
[17] Antonio Monzón,et al. Improved explicit equations for estimation of the friction factor in rough and smooth pipes , 2002 .