Splitting hairs: differentiating juvenile from adult deer (Odocoileus virginianus) by hair width

Ungulates are a main component in carnivore diets but determining consumption of juveniles is difficult. Past studies have used size of prey remains such as small hooves or bones to classify scat samples as containing content attributable to juveniles. Hair thickness and color may also be used, but seasonality could influence the coat of an adult by developing thinner hairs in summer that more closely resemble those from juveniles. Given this uncertainty, we aimed to quantitatively determine a hair diameter threshold to categorize the age-class of ungulate hair in scats. We obtained hair samples from captive (n = 133) and vehicle-killed (n = 5) white-tailed deer (Odocoileus virginianus) from Georgia and Virginia. We used microphotography image analysis to measure the width of hairs and their cuticular casts. We used a linear model to assess differences among body locations, age-classes, and locations along the hair strand. We also analyzed the change in hair width of juveniles as they aged. Hair diameter of adults, but not juveniles, differed significantly depending on body location, yet adult hairs were always significantly wider than those from juveniles. Juvenile hairs significantly increased in width after mid-September, when they molt into adult coats in our study area. We identified 104.2 µm measured at either 1/8 or 1/4 distance from the follicle as a threshold width to distinguish adult from juvenile hairs, with 95.3% accuracy. Our findings indicate that juvenile white-tailed deer can be distinguished from adults based on the width of hairs found in carnivore scats up until juveniles are 5 months old. More broadly, our results demonstrate that hair width may be used to classify juvenile versus adult prey remains in carnivore diet studies in other predator–prey systems. Los ungulados constituyen un componente principal en la dieta de los carnívoros silvestres; sin embargo, es difícil determinar el consumo de ungulados juveniles por carnívoros. Estudios previos han utilizado el tamaño de los restos de las presas en heces de carnívoros, tales como pezuñas o huesos pequeños, para identificar cuales contienen material de presas juveniles. El grosor y color del pelo también puede ser utilizado para este propósito, pero la estacionalidad puede influir la composición del pelaje de los adultos, produciendo pelos más delgados con apariencia de pelaje juvenil. Debido a esta incertidumbre, nuestro objetivo fue determinar un umbral cuantitativo de diámetro de pelo que permitiera categorizar la clase de edad de los remanentes de ungulados en heces. Colectamos muestras de pelo (n = 1,510) de venado de cola blanca (Odocoileus virginianus) provenientes de individuos en cautiverio o provenientes de colisiones vehiculares en los estados de Georgia y Virginia, EEUU. Usamos análisis de fotomicrografías para medir el diámetro del pelo y su impresión cuticular. Implementamos modelos lineales para evaluar diferencias entre ubicación corporal, clase de edad y tramos a lo largo del tallo piloso. También analizamos el cambio en el grosor del pelo de los juveniles en su transición a adultos. El diámetro del pelo en adultos, pero no en juveniles, fue significativamente diferente en función de la ubicación corporal, aunque los pelos de los adultos siempre fueron significativamente más gruesos que los pelos de los juveniles. Los pelos de los juveniles incrementaron significativamente en diámetro cuando mudaron a pelaje adulto, lo que ocurre después de mediados de septiembre en nuestra área de estudio. Determinamos que 104.2 µm a un 1/8 o un 1/4 del tallo piloso desde el folículo, es el diámetro umbral para distinguir adultos de juveniles con una exactitud del 95.3%. Estos hallazgos son aplicables en estudios de análisis de dieta de carnívoros cuando hay juveniles menores de 5 meses de edad en el paisaje, con el fin de establecer la proporción de heces de carnívoros que contienen restos de presas juveniles o adultas.

[1]  Douglas W. Smith,et al.  Spatial and temporal variability in summer diet of gray wolves (Canis lupus) in the Greater Yellowstone Ecosystem , 2021, Journal of Mammalogy.

[2]  D. Russell,et al.  Evaluation of Maternal Penning to Improve Calf Survival in the Chisana Caribou Herd , 2019, Wildlife Monographs.

[3]  K. Miller,et al.  Home range size, vegetation density, and season influences prey use by coyotes (Canis latrans) , 2018, PloS one.

[4]  K. MacAulay,et al.  Identifying guard hairs of Rocky Mountain carnivores , 2018, Wildlife Society Bulletin.

[5]  D. Diefenbach,et al.  Landscape‐level patterns in fawn survival across North America , 2018 .

[6]  Dana J. Morin,et al.  Efficient single-survey estimation of carnivore density using fecal DNA and spatial capture-recapture: a bobcat case study , 2018, Population Ecology.

[7]  Thomas D. Gable,et al.  Weekly Summer Diet of Gray Wolves (Canis lupus) in Northeastern Minnesota , 2018, The American Midland Naturalist.

[8]  Jon T. McRoberts,et al.  Growth and mortality of sympatric white‐tailed and mule deer fawns , 2017 .

[9]  C. Comer,et al.  White‐tailed deer fawn survival, home range, and habitat composition in northwest Louisiana , 2017 .

[10]  Thomas D. Gable,et al.  The problems with pooling poop: confronting sampling method biases in wolf (Canis lupus) diet studies , 2017 .

[11]  L. Mech,et al.  White-tailed Deer ( Odocoileus virginianus ) Subsidize Gray Wolves ( Canis lupus ) During a Moose ( Alces americanus ) Decline: A Case of Apparent Competition? , 2017 .

[12]  L. Waits,et al.  Bias in carnivore diet analysis resulting from misclassification of predator scats based on field identification , 2016 .

[13]  W. Lord,et al.  Facultative Scavenging and Carrion Guild Participation by Lynx rufus in the Presence of Young , 2015, The Southwestern Naturalist.

[14]  Yvette Chenaux-Ibrahim Seasonal Diet Composition of Gray Wolves (Canis lupus ) in Northeastern Minnesota Determined by Scat Analysis , 2015 .

[15]  C. DePerno,et al.  Seasonal Coyote Diet Composition at a Low-Productivity Site , 2015 .

[16]  S. Prange,et al.  Diet of the Recovering Ohio Bobcat (Lynx rufus) with a Consideration of Two Subpopulations , 2015 .

[17]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[18]  Guiming Wang,et al.  Population-level response of coyotes to a pulsed resource event , 2014, Population Ecology.

[19]  L. Waits,et al.  Diets of sympatric red wolves and coyotes in northeastern North Carolina , 2013 .

[20]  A. K. Davis,et al.  Sexual Differences in Hair Morphology of Coyote and White-Tailed Deer: Males have Thicker Hair , 2010 .

[21]  Rachel A. Kuhn,et al.  Comparative hair structure in the Lutrinae (Carnivora: Mustelidae) , 2010 .

[22]  Troy W. Grovenburg,et al.  Bed Site Selection by Neonate Deer in Grassland Habitats on the Northern Great Plains , 2010 .

[23]  W. M. Hess,et al.  Can hair width and scale pattern and direction of dorsal scapular mammalian hair be a relatively simple means to identify species? , 2009 .

[24]  M. Wallace,et al.  Factors Affecting Birth Dates of Sympatric Deer in West-central Texas , 2008 .

[25]  H. S. Ray,et al.  Seasonal Food Habits of the Coyote in the South Carolina Coastal Plain , 2008 .

[26]  A. Woolf,et al.  Survival of White-Tailed Deer Fawns in Southern Illinois , 2007 .

[27]  P. Zager,et al.  The role of American black bears and brown bears as predators on ungulates in North America , 2006 .

[28]  A. D. De Marinis,et al.  Hair identification key of wild and domestic ungulates from southern Europe , 2006 .

[29]  H. Campa,et al.  Cause-Specific Mortality and Survival of White-Tailed Deer Fawns in Southwestern Lower Michigan , 2006 .

[30]  D. Diefenbach,et al.  Survival rates, mortality causes, and habitats of Pennsylvania white-tailed deer fawns , 2004 .

[31]  K. Pohlmeyer,et al.  Subgroup differentiation in the Cervidae by hair cuticle analysis , 2001, Zeitschrift für Jagdwissenschaft.

[32]  G. Bubenik Morphological investigations of the winter coat in white-tailed deer: Differences in skin, glands and hair structure of various body regions , 1996 .

[33]  J. Weaver Refining the equation for interpreting prey occurrence in gray wolf scats , 1993 .

[34]  G. Koehler,et al.  Seasonal Resource Use among Mountain Lions, Bobcats, and Coyotes , 1991 .

[35]  C. Huegel,et al.  Bedsite Selection by White-Tailed Deer Fawns in Iowa , 1986 .

[36]  D. Gauthier,et al.  Wolf predation in the Burwash caribou herd, southwest Yukon , 1986 .

[37]  R. Labisky,et al.  Reproductive dynamics among disjunct white-tailed deer herds in Florida , 1985 .

[38]  L. K. Halls,et al.  White-tailed deer : ecology and management , 1985 .

[39]  D. H. Hirth Mother-Young Behavior in White-Tailed Deer, Odocoileus virginianus , 1985 .

[40]  C. Huegel,et al.  Mortality of white-tailed deer fawns in south-central Iowa , 1985 .

[41]  N. K. Jacobsen Differences of thermal properties of white-tailed deer pelage between seasons and body regions , 1980 .

[42]  D. Pimlott Wolf Predation and Unǵulate Populations , 1967 .

[43]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[44]  Troy W. Grovenburg,et al.  Survival of White-Tailed Deer Neonates in Minnesota and South Dakota , 2011 .

[45]  D. Whittaker,et al.  EFFECT OF COYOTE PREDATION ON EARLY FAWN SURVIVAL IN SYMPATRIC DEER SPECIES , 1999 .

[46]  P. Agnelli,et al.  Guide to the microscope analysis of Italian mammals hairs: Insectivora, Rodentia and Lagomorpha , 1993 .

[47]  L. Mech,et al.  DYNAMICS, MOVEMENTS, AND FEEDING ECOLOGY OF A NEWLY PROTECTED WOLF POPULATION IN NORTHWESTERN MINNESOTA , 1981 .

[48]  J. W. Webb,et al.  Reproductive Cycle of White-Tailed Deer of St. Croix, Virgin Islands , 1981 .

[49]  D. Trainer,et al.  Mortality of Young White-Tailed Deer Fawns in South Texas , 1971 .