Multitarget Simultaneous Localization and Mapping of a Sensor Network

This paper addresses the problem of simultaneously localizing multiple targets and estimating the positions of the sensors in a sensor network using particle filters. We develop a new technique called multitarget simultaneous localization and mapping (MSLAM) that has better performance than the well-known FastSLAM when there are several targets in the surveillance area. The proposed algorithm is based on the parallel partition particle filter, especially designed for multiple target tracking, and the truncated unscented Kalman filter for updating the sensors' positions.

[1]  Ángel F. García-Fernández,et al.  Two-Layer Particle Filter for Multiple Target Detection and Tracking , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[3]  Mark R. Morelande,et al.  A Bayesian Approach to Multiple Target Detection and Tracking , 2007, IEEE Transactions on Signal Processing.

[4]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..

[5]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[6]  A. Hero,et al.  Multitarget tracking using the joint multitarget probability density , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Eduardo Mario Nebot,et al.  Consistency of the FastSLAM algorithm , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[8]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[9]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[10]  Sebastian Thrun,et al.  Simultaneous Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[11]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[12]  Gon Woo Kim,et al.  A new compensation technique based on analysis of resampling process in FastSLAM , 2008, Robotica.

[13]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[14]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[15]  Ángel F. García-Fernández,et al.  Nonlinear filtering update phase via the single point truncated unscented Kalman filter , 2011, 14th International Conference on Information Fusion.

[16]  Ángel F. García-Fernández,et al.  Multitarget tracking using the Joint Multitrack Probability Density , 2009, 2009 12th International Conference on Information Fusion.

[17]  Rekha Jain,et al.  Wireless Sensor Network -A Survey , 2013 .

[18]  Simon Haykin,et al.  Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations , 2010, IEEE Transactions on Signal Processing.

[19]  A. Rahimi,et al.  Simultaneous localization, calibration, and tracking in an ad hoc sensor network , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[20]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[21]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[22]  A. Doucet,et al.  Distributed Online Self-Localization and Tracking in Sensor Networks , 2007, 2007 5th International Symposium on Image and Signal Processing and Analysis.

[23]  Kurt Konolige,et al.  Distributed Multirobot Exploration and Mapping , 2005, Proceedings of the IEEE.

[24]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[25]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[26]  Ba-Ngu Vo,et al.  A Random-Finite-Set Approach to Bayesian SLAM , 2011, IEEE Transactions on Robotics.

[27]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[28]  W.J. Chappell,et al.  Topology Insensitive Location Determination Using Independent Estimates Through Semi-Directional Antennas , 2006, IEEE Transactions on Antennas and Propagation.

[29]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[30]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[31]  Ángel F. García-Fernández,et al.  Asynchronous particle filter for tracking using non-synchronous sensor networks , 2011, Signal Process..

[32]  Nando de Freitas,et al.  Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm: Marginal-SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[33]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[34]  A. Doucet,et al.  Particle filtering for partially observed Gaussian state space models , 2002 .

[35]  Pramod K. Varshney,et al.  Performance Analysis of Distributed Detection in a Random Sensor Field , 2008, IEEE Transactions on Signal Processing.

[36]  Ioannis Pitas,et al.  Nonlinear processing and analysis of angular signals , 1998, IEEE Trans. Signal Process..

[37]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[38]  Ba-Ngu Vo,et al.  Rao-Blackwellised PHD SLAM , 2010, 2010 IEEE International Conference on Robotics and Automation.

[39]  Ba-Ngu Vo,et al.  A random set formulation for Bayesian SLAM , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Ángel F. García-Fernández,et al.  Truncated Unscented Kalman Filtering , 2012, IEEE Transactions on Signal Processing.

[41]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[42]  Wan Kyun Chung,et al.  Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem , 2008, IEEE Transactions on Robotics.

[43]  Fredrik Gustafsson,et al.  Road Intensity Based Mapping Using Radar Measurements With a Probability Hypothesis Density Filter , 2011, IEEE Transactions on Signal Processing.

[44]  Günther Schmidt,et al.  Building a global map of the environment of a mobile robot: the importance of correlations , 1997, Proceedings of International Conference on Robotics and Automation.