Multiple orthogonal polynomials associated with an exponential cubic weight

Abstract We consider multiple orthogonal polynomials associated with the exponential cubic weight e − x 3 over two contours in the complex plane. We study the basic properties of these polynomials, including the Rodrigues formula and nearest-neighbor recurrence relations. It turns out that the recurrence coefficients are related to a discrete Painleve equation. The asymptotics of the recurrence coefficients, the ratio of the diagonal multiple orthogonal polynomials and the (scaled) zeros of these polynomials are also investigated.

[1]  A. Ramani,et al.  Discrete Painlevé Equations: A Review , 2004 .

[2]  H. W. Gould,et al.  Operational formulas connected with two generalizations of Hermite polynomials , 1962 .

[3]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, II , 1986 .

[4]  Yang Chen Mourad Ismail Jacobi polynomials from compatibility conditions , 2003 .

[5]  Walter Van Assche,et al.  Some classical multiple orthogonal polynomials , 2001 .

[6]  D. Dominici Asymptotic analysis of generalized Hermite polynomials , 2006, math/0606324.

[7]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[8]  Youssèf Ben Cheikh,et al.  On d-symmetric classical d-orthogonal polynomials , 2011, J. Comput. Appl. Math..

[9]  Daan Huybrechs,et al.  Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature , 2010, J. Approx. Theory.

[10]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[11]  G. Pólya Über die Nullstellen sukzessiver Derivierten , 1922 .

[12]  P. Clarkson,et al.  On the relation between the continuous and discrete Painlevé equations , 2000 .

[13]  W. Van Assche,et al.  Multiple orthogonal polynomials for classical weights , 2003 .

[14]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[15]  Pavel Bleher,et al.  Topological Expansion in the Cubic Random Matrix Model , 2010, 1011.6338.

[16]  M. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .

[17]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, I , 1986 .

[18]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[19]  Walter Van Assche,et al.  Nearest neighbor recurrence relations for multiple orthogonal polynomials , 2011, J. Approx. Theory.

[20]  Theodore P. Hill,et al.  Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform , 2003, J. Approx. Theory.

[21]  A. Ramani,et al.  Quantum Painlevé equations: from continuous to discrete and back , 2008 .

[22]  M. N. Rebocho,et al.  Discrete Painlevé equations for recurrence coefficients of Laguerre–Hahn orthogonal polynomials of class one , 2016 .

[23]  J. Satsuma,et al.  A study of the alternate discrete Painlevé II equation , 1996 .

[24]  A. Aptekarev,et al.  Multiple orthogonal polynomials , 1998 .

[25]  R. B. Paris,et al.  The asymptotics of the generalised Hermite-Bell polynomials , 2009, J. Comput. Appl. Math..

[26]  Lun Zhang,et al.  Ladder operators and differential equations for multiple orthogonal polynomials , 2012, 1204.5058.

[27]  A. Fokas,et al.  From Continuous to Discrete Painlevé Equations , 1993 .

[28]  Peter A. Clarkson,et al.  Painlevé equations: nonlinear special functions , 2003 .